2618: [Cqoi2006]凸多边形
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 656 Solved: 340
[Submit][Status][Discuss]
Description
逆时针给出n个凸多边形的顶点坐标,求它们交的面积。例如n=2时,两个凸多边形如下图:
则相交部分的面积为5.233。
Input
第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形。第i个多边形的第一行包含一个整数mi,表示多边形的边数,以下mi行每行两个整数,逆时针给出各个顶点的坐标。
Output
输出文件仅包含一个实数,表示相交部分的面积,保留三位小数。
Sample Input
2
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0
6
-2 0
-1 -2
1 -2
2 0
1 2
-1 2
4
0 -3
1 -1
2 2
-1 0
Sample Output
5.233
HINT
100%的数据满足:2<=n<=10,3<=mi<=50,每维坐标为[-1000,1000]内的整数
Source
【思路】
半平面交即若干个直线代表的半平面的重合部分。
【代码】
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std; const int eps = 1e-; struct Pt {
double x,y;
Pt (double x=,double y=) :x(x),y(y) {}
};
typedef Pt vec; vec operator - (Pt a,Pt b) { return vec(a.x-b.x,a.y-b.y); }
vec operator + (vec a,vec b) { return vec(a.x+b.x,a.y+b.y); }
vec operator * (vec a,double x) { return vec(a.x*x,a.y*x); } double cross(Pt a,Pt b) { return a.x*b.y-a.y*b.x; } struct Line {
Pt p; vec v; double ang;
Line() {}
Line(Pt p,vec v) :p(p),v(v) { ang=atan2(v.y,v.x); }
bool operator < (const Line& rhs) const {
return ang < rhs.ang;
}
};
bool onleft(Line L,Pt p) { return cross(L.v,p-L.p)>; }
Pt getLineInter(Line a,Line b) {
vec u=a.p-b.p;
double t=cross(b.v,u)/cross(a.v,b.v);
return a.p+a.v*t;
}
vector<Pt> HPI(vector<Line> L) {
int n=L.size();
sort(L.begin(),L.end());
int f,r;
vector<Pt> p(n) , ans;
vector<Line> q(n);
q[f=r=]=L[];
for(int i=;i<n;i++) {
while(f<r && !onleft(L[i],p[r-])) r--;
while(f<r && !onleft(L[i],p[f])) f++;
q[++r]=L[i];
if(fabs(cross(q[r].v,q[r-].v))<eps) {
r--;
if(onleft(q[r],L[i].p)) q[r]=L[i];
}
if(f<r) p[r-]=getLineInter(q[r-],q[r]);
}
while(f<r && !onleft(q[f],p[r-])) r--;
if(r-f<=) return ans;
p[r]=getLineInter(q[r],q[f]);
for(int i=f;i<=r;i++) ans.push_back(p[i]);
return ans;
}
vector<Line> L;
vector<Pt> p;
Pt t[];
int n,m; int main() {
scanf("%d",&n);
for(int i=;i<n;i++) {
scanf("%d",&m);
for(int i=;i<m;i++)
scanf("%lf%lf",&t[i].x,&t[i].y);
for(int i=;i<m;i++)
L.push_back(Line(t[i-],t[i]-t[i-]));
L.push_back(Line(t[m-],t[]-t[m-]));
}
p = HPI(L);
double ans=0.0; int m=p.size();
for(int i=;i<m-;i++)
ans += cross(p[i]-p[],p[i+]-p[]);
printf("%.3lf",ans/);
return ;
}