矩阵快速幂,本质是floyd
把 * 改成 + 即可
注意初始化
因为只有100条边,所以可以离散化
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 101
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, t, s, e, cnt;
int x[N], y[N], z[N], a[N]; struct Matrix
{
int n, m;
int a[N][N];
Matrix()
{
n = m = 0;
memset(a, 63, sizeof(a));
}
}; inline Matrix operator * (Matrix x, Matrix y)
{
int i, j, k;
Matrix ans;
ans.n = x.n;
ans.m = y.m;
for(i = 1; i <= x.n; i++)
for(j = 1; j <= y.m; j++)
for(k = 1; k <= y.n; k++)
ans.a[i][j] = min(ans.a[i][j], x.a[i][k] + y.a[k][j]);
return ans;
} inline Matrix operator ^ (Matrix x, int y)
{
int i;
Matrix ans;
ans.n = ans.m = cnt;
for(i = 1; i <= cnt; i++) ans.a[i][i] = 0;
for(; y; y >>= 1)
{
if(y & 1) ans = ans * x;
x = x * x;
}
return ans;
} int main()
{
int i;
Matrix sum;
scanf("%d %d %d %d", &n, &t, &s, &e);
a[++cnt] = s;
a[++cnt] = e;
for(i = 1; i <= t; i++)
{
scanf("%d %d %d", &z[i], &x[i], &y[i]);
a[++cnt] = x[i];
a[++cnt] = y[i];
}
std::sort(a + 1, a + cnt + 1);
cnt = std::unique(a + 1, a + cnt + 1) - (a + 1);
sum.n = sum.m = cnt;
for(i = 1; i <= t; i++)
{
x[i] = std::lower_bound(a + 1, a + cnt + 1, x[i]) - a;
y[i] = std::lower_bound(a + 1, a + cnt + 1, y[i]) - a;
sum.a[x[i]][y[i]] = z[i];
sum.a[y[i]][x[i]] = z[i];
}
sum = sum ^ n;
s = std::lower_bound(a + 1, a + cnt + 1, s) - a;
e = std::lower_bound(a + 1, a + cnt + 1, e) - a;
printf("%d\n", sum.a[s][e]);
return 0;
}