4 seconds
256 megabytes
standard input
standard output
You are given n segments on the coordinate axis Ox and the number k. The point is satisfied if it belongs to at least k segments. Find the smallest (by the number of segments) set of segments on the coordinate axis Ox which contains all satisfied points and no others.
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 106) — the number of segments and the value of k.
The next n lines contain two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109) each — the endpoints of the i-th segment. The segments can degenerate and intersect each other. The segments are given in arbitrary order.
First line contains integer m — the smallest number of segments.
Next m lines contain two integers aj, bj (aj ≤ bj) — the ends of j-th segment in the answer. The segments should be listed in the order from left to right.
3 2
0 5
-3 2
3 8
2
0 2
3 5
3 2
0 5
-3 3
3 8
1
0 5
题意:给N个区间求被覆盖K次的区间。
题解:用线段扫描左端点(用-1标记)进入tmp++,右端点(用1标记)出来tmp--,当tmp为k时就是答案区间。
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
using namespace std;
vector<int>ans;
vector<pii>s;
int n,k;
int main()
{
ios::sync_with_stdio(false);
cin.tie();
cin>>n>>k;
for(int i=;i<n;i++)
{
int a,b;
cin>>a>>b;
s.pb(mp(a,-));
s.pb(mp(b,));
}
sort(s.begin(),s.end());
int tmp=;
for(int i=;i<s.size();i++)
{
if(s[i].second==-)
{
tmp++;
if(tmp==k)ans.pb(s[i].first);
}
else
{
if(tmp==k)ans.pb(s[i].first);
tmp--;
}
}
cout<<ans.size()/<<endl;
for(int i=;i<ans.size()/;i++)
{
cout<<ans[*i]<<" "<<ans[*i+]<<endl;
}
}