bsxfun.h multiple threads backup

时间:2022-03-29 12:25:32

https://code.google.com/p/deep-learning-faces/source/browse/trunk/cuda_ut/include/bsxfun.h?r=7&spec=svn7

/*
Copyright (C) 2013 Yichuan Tang.
contact: tang at cs.toronto.edu
http://www.cs.toronto.edu/~tang This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version. This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ #ifndef _BSXFUN_H_
#define _BSXFUN_H_ #include "cu_util.h"
#include "cu_clmatrix.h" /***********************************************************************************************************
* @brief: this function performs a matrix + col. vector operation *
* @param[in]: pA and pOut: nI by nJ matrix
* pB is a column vector nI by 1
* nInJ is the total dimensionality of the matrix pA
*
* @param[out]:
* @topology: assumes a 1D block layout in x direction and covers the entire matrix pA
* @note: assume column-major
* @change:
* @tested:
* @to_do:
***********************************************************************************************************
*/
template<class O, typename T>
__global__ void bsxfun_colvec_1dkernel( const T* pA, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], pVec[i % nI]);
} /***********************************************************************************************************
* @brief: this function performs a matrix + row. vector operation
* @param[in]: pA and pOut: nI by nJ matrix
* pVec is a row vector 1 by nJ
* nInJ is the total dimensionality of the matrix pA
*
* @param[out]:
* @topology: assumes a 1D block layout in x direction and covers the entire matrix pA
* @note: assume column-major
* @change:
* @tested:
* @to_do:
***********************************************************************************************************
*/
template<class O, typename T>
__global__ void bsxfun_rowvec_1dkernel( const T* pA, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], pVec[i / nI]);
} //alpha beta version
template<class O, typename T>
__global__ void bsxfun_colvec_1dkernel( T alpha, const T* pA, T beta, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], alpha, pVec[i % nI], beta);
} template<class O, typename T>
__global__ void bsxfun_rowvec_1dkernel( T alpha, const T * pA, T beta, const T* pVec, T* pOut,
int nI, int nJ, int nInJ, O op)
{
const unsigned int ind = blockIdx.x*blockDim.x + threadIdx.x;
const unsigned int totalThreads = blockDim.x*gridDim.x; for (int i = ind; i < nInJ; i += totalThreads)
pOut[i] = op(pA[i], alpha, pVec[i / nI], beta);
} /***********************************************************************************************************
* @brief: function similar to bsxfun of matlab
* A op B ---> Out
* @param[in]: op - type of operation
* A - first matrix
* B - col/row vector, one dimension must be 1
* @param[out]:
if Out is set to A, the operation is inplace, overwrites A
*
* @topology:
* @note:
* @change:
* @tested:
* @to_do: switch to shared memory operators to see if we can achieve speedup?!
***********************************************************************************************************
*/
template<class O, typename T>
int Bsxfun( const clMatrix<T>& A, O op, const clMatrix<T>& B, clMatrix<T>& Out){ if (! (B.nI == || B.nJ == ) )
return -;
if ( ( B.nI == && B.nJ != A.nJ) || ( B.nJ == && B.nI != A.nI) ){ if (!(B.nI == && B.nJ == )) //special case
return -;
}
if ( A.nI != Out.nI || A.nJ != Out.nJ)
return -; const unsigned int datadim = A.nJ*A.nI;
dim3 dim_block( MEDIUM_NUM_THREADS );
dim3 dim_grid( MIN( MAX_GRIDS, (datadim + dim_block.x-)/dim_block.x) ); if (B.nJ == && B.nI != ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (B.nJ != && B.nI == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{ // when B is 1x1
if (A.nI == ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (A.nJ == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>( A.pData, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{
return -; //invalid case
} }
return ;
} //alpha beta version
template<class O, typename T>
int Bsxfun(T alpha, const clMatrix<T>& A, O op, T beta, const clMatrix<T>& B, clMatrix<T>& Out){ if (! (B.nI == || B.nJ == ) )
return -;
if ( ( B.nI == && B.nJ != A.nJ) || ( B.nJ == && B.nI != A.nI) ){ if (!(B.nI == && B.nJ == )) //special case
return -;
}
if ( A.nI != Out.nI || A.nJ != Out.nJ)
return -; const uint64_t datadim = A.nJ*A.nI;
dim3 dim_block( MEDIUM_NUM_THREADS );
dim3 dim_grid( MIN( MAX_GRIDS, (datadim + dim_block.x-)/dim_block.x) ); if (B.nJ == && B.nI != ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>( alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (B.nJ != && B.nI == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>( alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{
if (A.nI == ){
bsxfun_colvec_1dkernel<<<dim_grid, dim_block>>>(alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op);
}else if (A.nJ == ){
bsxfun_rowvec_1dkernel<<<dim_grid, dim_block>>>(alpha, A.pData, beta, B.pData, Out.pData,
A.nI, A.nJ, datadim, op );
}else{
return -; //invalid case
} } return ;
} #endif