题目
Source
http://acm.timus.ru/problem.aspx?space=1&num=1996
Description
Emperor Palpatine has been ruling the Empire for 25 years and Darth Vader has been the head of the Empire Armed Forces. However, the Rebel movement is strong like it never used to be. One of the rebel leaders, Princess Leia from Alderaan, managed to get hold of secret blueprints of the Death Star, the imperial war station.
The Princess was going to deliver the station plan to the secret base for further analysis and searching for vulnerable spots. But her ship was attacked by the space destroyer "Devastator" headed by Darth Vader. At the last moment Princess Leia managed to send her findings to one of the closest planet called Tatooine with her droid R2-D2. Quite conveniently, an old friend of her father Obi-Wan Kenobi lives on that planet.
R2-D2 realizes the importance of his mission. He is going to encrypt the information so that the wrong people won’t get it.
The memory of R2-D2 has many files with images. First he wanted to use a well-known encrypting algorithm. The point of the method is to replace the least significant bits of the image with the encrypted message bits. The difference is practically unnoticeable on the picture, so one won’t suspect that it contains a hidden message.
But then R2-D2 decided that this method is quite well-known and the information won’t be protected enough. He decided to change the least significant bits of the image so that the secret information was a continuous sequence of the bytes of the image file. Help the droid determine if it is possible. And if it is, find the minimum number of bits to alter.
Input
The first line of the input contains integers n and m (1 ≤ n, m ≤ 250 000) — the sizes of the image file and of the file with the secret information in bytes. On the second line the content of the file with an image is given and the third line contains the secret information. The files are given as a sequence of space-separated bytes. Each byte is written as a sequence of eight bits in the order from the most to the least significant bit.
Output
Print "No", if it is impossible to encrypt information in this image. Otherwise, print in the first line "Yes", and in the second line — the number of bits to alter and the number of the byte in the file with the image, starting from which the secret information will be recorded. If there are multiple possible variants, print the one where the secret information is written closer to the beginning of the image file.
Sample Input
3 2
11110001 11110001 11110000
11110000 11110000
3 1
11110000 11110001 11110000
11110000
Sample Output
Yes
1 2
Yes
0 1
分析
题目看不懂说什么= =。。反正就是说给两个由8个01串组合成的序列A和B,现在能通过修改A序列中各01串的最后一位使得B串在A中匹配,问最少要修改多少位,且最开始匹配的位置是什么。
先不考虑最少修改几位。只考虑每个01串前面7位的话,B串在A串中所有能匹配的位置可以用KMP求出。
那么对于每一个匹配,怎么求出要修改几位使得8位都一样?可以构造多项式用FFT求出各个字符分别在主串各个位置中的子串和模式串的Hamming距离,这算FFT的一个经典应用吧,LA4671。。
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 555555
const double PI=acos(-1.0); struct Complex{
double real,imag;
Complex(double _real,double _imag):real(_real),imag(_imag){}
Complex(){}
Complex operator+(const Complex &cp) const{
return Complex(real+cp.real,imag+cp.imag);
}
Complex operator-(const Complex &cp) const{
return Complex(real-cp.real,imag-cp.imag);
}
Complex operator*(const Complex &cp) const{
return Complex(real*cp.real-imag*cp.imag,real*cp.imag+cp.real*imag);
}
void setValue(double _real=0,double _imag=0){
real=_real; imag=_imag;
}
}; int len;
Complex wn[MAXN],wn_anti[MAXN]; void FFT(Complex y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
for(int h=2; h<=len; h<<=1){
Complex Wn=(op==1?wn[h]:wn_anti[h]);
for(int i=0; i<len; i+=h){
Complex W(1,0);
for(int j=i; j<i+(h>>1); ++j){
Complex u=y[j],t=W*y[j+(h>>1)];
y[j]=u+t;
y[j+(h>>1)]=u-t;
W=W*Wn;
}
}
}
if(op==-1){
for(int i=0; i<len; ++i) y[i].real/=len;
}
}
void Convolution(Complex A[],Complex B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i].setValue();
B[i].setValue();
} FFT(A,1); FFT(B,1);
for(int i=0; i<len; ++i){
A[i]=A[i]*B[i];
}
FFT(A,-1);
} int cnt[MAXN]; int S[255555],T[255555],sn,tn;
int nxt[255555]; void get_nxt(int T[],int n){
nxt[1]=0;
int j=0;
for(int i=2; i<=n; ++i){
while(j>0 && T[j+1]!=T[i]) j=nxt[j];
if(T[j+1]==T[i]) ++j;
nxt[i]=j;
}
}
int ansx=INF,ansy;
void KMP(int S[],int T[],int n,int m){
int j=0;
for(int i=1; i<=n; ++i){
while(j>0 && T[j+1]!=S[i]) j=nxt[j];
if(T[j+1]==S[i]) ++j;
if(j==m){
if(ansx>m-cnt[i-1]){
ansx=m-cnt[i-1];
ansy=i-m+1;
}
j=nxt[j];
}
}
} int x[255555],y[255555];
Complex A[MAXN],B[MAXN]; int main(){
for(int i=0; i<MAXN; ++i){
wn[i].setValue(cos(2.0*PI/i),sin(2.0*PI/i));
wn_anti[i].setValue(wn[i].real,-wn[i].imag);
}
int n,m,a;
while(~scanf("%d%d",&n,&m)){
for(int i=1; i<=n; ++i){
scanf("%d",&a);
x[i-1]=a&1;
S[i]=a/10;
}
for(int i=1; i<=m; ++i){
scanf("%d",&a);
y[i-1]=a&1;
T[i]=a/10;
} if(m>n){
puts("No");
return 0;
} for(int i=0; i<n; ++i) A[i].setValue(x[i]);
for(int i=0; i<m; ++i) B[i].setValue(y[m-i-1]);
for(int i=m; i<n; ++i) B[i].setValue();
Convolution(A,B,n);
for(int i=0; i<len; ++i){
cnt[i]=(int)(A[i].real+0.5);
}
for(int i=0; i<n; ++i) A[i].setValue(!x[i]);
for(int i=0; i<m; ++i) B[i].setValue(!y[m-i-1]);
for(int i=m; i<n; ++i) B[i].setValue();
Convolution(A,B,n);
for(int i=0; i<len; ++i){
cnt[i]+=(int)(A[i].real+0.5);
} get_nxt(T,m);
KMP(S,T,n,m);
if(ansx==INF){
puts("No");
return 0;
}
puts("Yes");
printf("%d %d\n",ansx,ansy);
}
return 0;
}
URAL1996 Cipher Message 3(KMP + FFT)的更多相关文章
-
Luogu 3375 【模板】KMP字符串匹配(KMP算法)
Luogu 3375 [模板]KMP字符串匹配(KMP算法) Description 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来 ...
-
【BZOJ3670】动物园(KMP算法)
[BZOJ3670]动物园(KMP算法) 题面 BZOJ 题解 神TM阅读理解题 看完题目之后 想暴力: 搞个倍增数组来跳\(next\) 每次暴跳\(next\) 复杂度\(O(Tnlogn)\) ...
-
【BZOJ3670】【NOI2014】动物园(KMP算法)
[BZOJ3670]动物园(KMP算法) 题面 BZOJ 题解 神TM阅读理解题 看完题目之后 想暴力: 搞个倍增数组来跳\(next\) 每次暴跳\(next\) 复杂度\(O(Tnlogn)\) ...
-
稀疏傅里叶变换(sparse FFT)
作者:桂. 时间:2018-01-06 14:00:25 链接:http://www.cnblogs.com/xingshansi/p/8214122.html 前言 对于数字接收来讲,射频域随着带 ...
-
【Luogu5349】幂(分治FFT)
[Luogu5349]幂(分治FFT) 题面 洛谷 题解 把多项式每一项拆出来考虑,于是等价于要求的只有\(\sum_{i=0}^\infty i^kr^i\). 令\(f(r)=\sum_{i=0} ...
-
(KMP 扩展)Clairewd’s message -- hdu -- 4300
http://acm.hdu.edu.cn/showproblem.php?pid=4300 Clairewd’s message Time Limit: 2000/1000 MS (Java/Oth ...
-
HDU4609 3-idiots(母函数 + FFT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4609 Description King OMeGa catched three men wh ...
-
hdu 4609 3-idiots(快速傅里叶FFT)
比较裸的FFT(快速傅里叶变换),也是为了这道题而去学的,厚的白书上有简单提到,不过还是推荐看算法导论,讲的很详细. 代码的话是照着别人敲的,推荐:http://www.cnblogs.com/kua ...
-
uvalive3026 Period (KMP+结论)
题目链接:http://vjudge.net/problem/viewProblem.action?id=29342 题目大意:给定字符串,找到每个前缀的最大循环节的个数. 首先当然是kmp预处理,接 ...
随机推荐
-
TypeScript Class(类)
传统的JavaScript注重用函数和基于原型的继承来创建可复用的组件,但这可能让用习惯面对对象方式的程序员感到棘手,因为他们的继承和创建对象都是由类而来的.从JavaScript的下一个版本,ECM ...
-
AceAdmin In MVC之控件
AceAdmin有很多Html控件,而下载下来之后全部混杂在一起,想用一个控件有时得调整半天,干脆整理出一个版本,而且结合起来MVC的封装.以后就不用一个js css的调了. 在MVC中Html的控件 ...
-
#pragma comment使用
编程经常碰到,理解的总不是很透彻,在这里查阅资料总结一下! 在编写程序的时候,我们常用到#pragma指令来设定编译器的状态或者是指示编译器完成一些特定的动作. #pragma once : 这是一个 ...
-
JavaSE学习总结第07天_面向对象2
07.01 成员变量和局部变量的区别 1.在类中的位置不同 成员变量 类中方法外 局部变量 方法内或者方法声明上 2.在内存中的位置不同 成员变量 堆内存 局部变量 栈内存 3 ...
-
支持向量机(五)SMO算法
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规 ...
-
sql存储过程,根据多个条件查询,返回一个dataTable或者DataSet
不废话,先直接代码 首先sql部分(我在这里加了一个@zx作为判断,一般不需要这个参数): ALTER Proc [dbo].[Proc_Boss_Show] ),--开始条数 ),--结束条数 @S ...
-
java.io.Serializable中serialVersionUID的作用
把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上,通常存放在一个文件中: 2) 在网 ...
-
zookeeper和keepalived的区别
zookeeper主要就是为了保持数据的一致性来的,举个栗子,通俗点就是 本来是存储在各个服务器上的配置文件,现在我不存储在各个服务器上了,我就把全部配置文件都存储在zookeeper服务器上,应用服 ...
-
CF815C Karen and Supermarket
题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...
-
php缓存类
<?php /* * 缓存类 cache * 实 例: include( "cache.php" ); $cache = new cache(30); $cache-> ...