思路:
dp
先排个序,放进一个袋子里的显然是一段区间
定义状态:pos[i]表示小于等于i的可以作为(放进一个袋子里的)一段区间起点的离i最近的位置
显然,初始状态:pos[i] = 1,1 <= i <= k
状态转移:
pos[i+1] = i+1 ,如果 a[i] - a[pos[i-k+1]] <= d , 因为在这种情况下pos[i-k+1] 到 i 可以放进一个袋子里,那么i+1就可以作为新的起点了
pos[i+1] = pos[i], 其他情况
最后只要判断pos[n+1] 等不等于 n+1 就可以判断是不是都能放进袋子里
代码:
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pii pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 5e5 + ;
int a[N], pos[N];
int main() {
int n, k, d;
scanf("%d%d%d", &n, &k, &d);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
sort(a+, a++n);
for (int i = ; i <= k; i++) pos[i] = ;
for (int i = k; i <= n; i++) {
int pre = pos[i-k+];
if(a[i] - a[pre] <= d) pos[i+] = i+;
else pos[i+] = pos[i];
//cout << i+1 << " " << pos[i+1] << endl;
}
if(pos[n+] == n+) printf("YES\n");
else printf("NO\n");
return ;
}