poj2986A Triangle and a Circle&&poj3675Telescope(三角形剖分)

时间:2023-01-22 15:01:37

链接

2986是3675的简化版,只有一个三角形。

这题主要在于求剖分后三角形与圆的相交面积,需要分情况讨论。

具体可以看此博客 http://hi.baidu.com/billdu/item/703ad4e15d819db52f140b0b

在分析第3、4两种情况时,我是用角度来进行判断的,如果<obc||<ocb大于90度就为他所说的第四种情况,不然就是第三种情况。

还有对于sig的解释貌似网上都没写,可能都觉得太简单了。。。自己手画了一下,大体是这个样子的

poj2986A Triangle and a Circle&&poj3675Telescope(三角形剖分)红色标记那块三角形是需要减掉对于当前多边形,可以看出以最下角进行剖分三角形时,cross(b,c)算的那块小三角形的确是负的,所以需要判断一下当前的面积是要加上的还是要减掉的。

讨论的东西比较多,细节比较多,WA了好多遍,对着数据查了好久终于过了。。

附上一些数据

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
} p[N];
struct tri
{
point a,b,c;
} tr[N];
typedef point pointt;
point operator -(point a,point b)
{
return point(a.x-b.x,a.y-b.y);
}
point operator *(point a,double r)
{
return point(a.x*r,a.y*r);
}
point operator +(point a,point b)
{
return point(a.x+b.x,a.y+b.y);
}
struct line
{
point u,v;
point ppoint(double t)
{
return point(u+v*t);
}
};
struct circle
{
point c;
double r;
circle(point c,double r):c(c),r(r) {}
point ppoint(double a)
{
return point(c.x+cos(a)*r,c.y+sin(a)*r);
}
};
double r;
point ip;
double dcmp(double x)
{
if(fabs(x)<eps) return ;
return x<?-:;
}
double dis(point a)
{
return sqrt(a.x*a.x+a.y*a.y);
}
double dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
}
double area(point a,point b,point c)
{
return fabs(cross(a-c,b-c))/;
} int getlinecircle(line ll,circle cc,point &p1,point &p2)
{
double a = ll.v.x,b = ll.u.x-cc.c.x,c = ll.v.y,d = ll.u.y-cc.c.y;
double e = a*a+c*c,f = *(a*b+c*d),g = b*b+d*d-cc.r*cc.r;
double delta = f*f-*e*g;
double t1,t2;
if(dcmp(delta)<)return ;//ÏàÀë
if(dcmp(delta)==)
{
t1 = t2 = -f/(*e);//cout<<t1<<" -"<<e<<" "<<f<<endl;
p1 = ll.ppoint(t1);
return ;//ÏàÇÐ
}
//Ïཻ
t1 = (-f-sqrt(delta))/(*e);
p1 = ll.ppoint(t1);
t2 = (-f+sqrt(delta))/(*e);
p2 = ll.ppoint(t2);
// cout<<p1.x<<" "<<p1.y<<" "<<p2.x<<" "<<p2.y<<endl;
return ;
}
double mul(point a,point b,point c)
{
return cross(b-a,c-a);
}
bool cmp(point a,point b)
{
if(dcmp(mul(ip,a,b))==)
return dis(a-ip)<dis(b-ip);
else
return dcmp(mul(ip,a,b))>;
}
double distancetoline(point p,point a,point b)
{
point v1 = a-b,v2 = p-b;
return fabs(cross(v1,v2))/dis(v1);
}
int dot_online_in(point p,point l1,point l2)
{
return !dcmp(mul(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps;
}
double angle(point a,point b)
{
return acos(dot(a,b)/dis(a)/dis(b));
}
double cal(tri tr)
{
circle cp=circle(point(,),r);
int sig = dcmp(cross(tr.b,tr.c));
if(sig==) return ;
double d1 = dis(tr.a-tr.b),d2 = dis(tr.a-tr.c);
if(dcmp(d1-r)<=&&dcmp(d2-r)<=)
{
double s = sig*area(tr.a,tr.b,tr.c);
return s;
}
double dline = distancetoline(cp.c,tr.b,tr.c);
if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)>=)
{
return sig*angle(tr.b,tr.c)*r*r/2.0;
}
double ag = angle(tr.c-tr.b,tr.a-tr.b),bg = angle(tr.b-tr.c,tr.a-tr.c);
point p1,p2;
line l1;
l1.u = tr.b,l1.v = tr.c-tr.b;
getlinecircle(l1,cp,p1,p2); if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)<&&(dcmp(ag-pi/)>=||dcmp(bg-pi/)>=))
{ double s = sig*angle(tr.b,tr.c)*r*r/;
return s;
}
if(dcmp(d1-r)>=&&dcmp(d2-r)>=&&dcmp(dline-r)<)
{
double s = (angle(tr.b,tr.c)-angle(p1,p2))*r*r/2.0+area(tr.a,p1,p2);
return sig*s;
} p1 = dot_online_in(p1,tr.b,tr.c)?p1:p2;
if(dcmp(d1-r)<)
{
return sig*(angle(tr.c,p1)*r*r/+area(tr.a,p1,tr.b));
}
else
{
return sig*(angle(p1,tr.b)*r*r/+area(tr.a,p1,tr.c));
}
}
int dots_inline(point p1,point p2,point p3)
{
return !dcmp(mul(p1,p2,p3));
}
int main()
{
int i,n;
while(scanf("%lf",&r)!=EOF)
{
scanf("%d",&n);
for(i = ; i < n ; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
}
p[n] = p[];
double ans = ;
for(i = ; i < n ; i++)
{
if(dots_inline(ip,p[i],p[i+])) continue;
tr[i].a = point(,);
tr[i].b = p[i];
tr[i].c = p[i+];
ans+=cal(tr[i]);
}
printf("%.2f\n",fabs(ans)+eps);
}
return ;
}

589.00 191.00 -554.00 710.00 748.00 774.00 -888.00 -588.00 902.00

201.00 -847.00 -365.00 886.00 -557.00 -609.00 272.00 -345.00 189.00

-358.00 981.00 269.00 511.00 158.00 -304.00 468.00 463.00 834.00

969.00 514.00 -445.00 460.00 -177.00 774.00 -34.00 -125.00 162.00

-467.00 413.00 -714.00 -986.00 362.00 666.00 813.00 271.00 264.00

-497.00 908.00 -414.00 631.00 -220.00 868.00 166.00 -258.00 306.00

-107.00 -743.00 -952.00 322.00 -273.00 -214.00 -14.00 466.00 758.00

511.00 -416.00 -934.00 -745.00 -335.00 -132.00 -482.00 391.00 626.00

928.00 821.00 -293.00 -853.00 -488.00 -312.00 -27.00 94.00 361.00

-979.00 -280.00 791.00 -943.00 -300.00 -278.00 -821.00 684.00 365.00

-700.00 955.00 -315.00 154.00 -103.00 -606.00 404.00 -792.00 940.00

607.00 783.00 597.00 944.00 -672.00 -323.00 343.00 -799.00 526.00

815.00 -390.00 -291.00 37.00 422.00 687.00 672.00 613.00 848.00

-988.00 363.00 -529.00 660.00 -597.00 143.00 502.00 459.00 522.00

-206.00 484.00 109.00 -111.00 424.00 650.00 330.00 -545.00 480.00

94.00 -638.00 -59.00 -9.00 -400.00 -702.00 0.00 267.00 741.00

-859.00 522.00 109.00 -640.00 383.00 712.00 489.00 -663.00 635.00

808.00 -31.00 471.00 172.00 -374.00 21.00 120.00 -860.00 474.00

-539.00 -887.00 498.00 844.00 -453.00 -213.00 -479.00 -9.00 315.00

答案

Case 1
0.00
Case 2
0.00
Case 3
274955.27
Case 4
0.00
Case 5
0.00
Case 6
0.00
Case 7
25157.17
Case 8
9943.87
Case 9
181113.99
Case 10
0.00
Case 11
11846.16
Case 12
0.00
Case 13
404668.37
Case 14
0.00
Case 15
0.00
Case 16
74663.53
Case 17
80015.79
Case 18
0.00
Case 19
57316.85
Case 20
0.00

poj2986A Triangle and a Circle&&poj3675Telescope(三角形剖分)的更多相关文章

  1. POJ 2986 A Triangle and a Circle(三角形和圆形求交)

    Description Given one triangle and one circle in the plane. Your task is to calculate the common are ...

  2. POJ 2986 A Triangle and a Circle 圆与三角形的公共面积

    计算几何模板 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h& ...

  3. POJ 2986 A Triangle and a Circle

    题意:给定一个三角形,以及一个圆的圆心坐标和半径,求圆和三角形的相交面积. 思路: 用三角剖分,三角形上每个线段都变成这个线段与圆心的三角形,然后算出每个三角形与圆的相交面积,然后根据有向面积的正负累 ...

  4. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

  5. PHP面向对象实例(图形计算器)

    效果:

  6. 对C&plus;&plus;虚函数、虚函数表的简单理解

    一.虚函数的作用 以一个通用的图形类来了解虚函数的定义,代码如下: #include "stdafx.h" #include <iostream> using name ...

  7. UVa 11524&colon;In-Circle(解析几何)

    Problem EIn-CircleInput: Standard Input Output: Standard Output In-circle of a triangle is the circl ...

  8. zoj 1010 (线段相交判断&plus;多边形求面积)

    链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=10 Area Time Limit: 2 Seconds      Mem ...

  9. S1:new操作符

    function Shape(type){ this.type = type || "rect"; this.calc = function(){ return "cal ...

随机推荐

  1. libevent源码分析:eventop

    eventop:定义了event_base使用的后端IO复用的一个统一接口 /** Structure to define the backend of a given event_base. */ ...

  2. Ajax发送异步请求(四步操作)

    1.第一步(得到XMLHttpRequest) *ajax其实只需要学习一个对象:XMLHttpRequest,如果掌握了它,就掌握了ajax!! *得到XMLHttpRequest >大多数浏 ...

  3. CString的GetBuffer用法,GetBuffer本质,GetBuffer常见问题解决方法

    一.函数原型 CString::GetBuffer LPTSTR GetBuffer( int nMinBufLength ); throw( CMemoryException ); Return V ...

  4. &lpar;贪心5&period;2&period;1&rpar;UVA 10026 Shoemaker&&num;39&semi;s Problem&lpar;利用数据有序化来进行贪心选择&rpar;

    /* * UVA_10026.cpp * * Created on: 2013年10月10日 * Author: Administrator */ #include <iostream> ...

  5. poj 2774 Long Long Message 后缀数组LCP理解

    题目链接 题意:给两个长度不超过1e5的字符串,问两个字符串的连续公共子串最大长度为多少? 思路:两个字符串连接之后直接后缀数组+LCP,在height中找出max同时满足一左一右即可: #inclu ...

  6. ARCproject中加入非ARC文件,或者非ARC环境中加入ARC文件

    ARC与非ARC在一个项目中同一时候使用, 选择项目中的Targets,选中你所要操作的Target,选Build Phases,在当中Complie Sources中选择须要ARC的文件双击,并在输 ...

  7. asp&period;net mvc4 远程验证

    [HttpGet] public ActionResult CheckToolsIdExists(string ToolsID) { using (BaseContext context = new ...

  8. Vue实战笔记

    1.组件的属性 例子: <template> <div class="hello"> <test-props name="demo&quot ...

  9. 解决Can &&num;39&semi;t connect to local MySQL server through socket &&num;39&semi;&sol;tmp&sol;mysql&period;sock &&num;39&semi;&lpar;2&rpar; &quot&semi;&semi;

    解决方案: https://blog.csdn.net/HeatDeath/article/details/79065872 https://blog.csdn.net/hjf161105/artic ...

  10. NFS配置与安装

    安装 1 环境描述:    * 网络环境:                  NFS server: 192.168.102.47                  NFS client: 192.1 ...