CS224d assignment 1【Neural Network Basics】

时间:2024-01-18 17:46:32

refer to:

机器学习公开课笔记(5):神经网络(Neural Network)

CS224d笔记3——神经网络

深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答

CS224d Problem set 1作业

softmax:

def softmax(x):

    assert len(x.shape) > 1
x -= np.max(x, axis=1, keepdims=True)
x = np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True) return x

sigmoid & sigmoid_grad:

def sigmoid(x):

    result = 1.0 / (1.0 + np.exp(-x))

    return result

def sigmoid_grad(f):

    f=f*(1.0-f)

    return f

gradcheck_naive:

def gradcheck_naive(f, x):
"""
Gradient check for a function f
- f should be a function that takes a single argument and outputs the
cost and its gradients
- x is the point (numpy array) to check the gradient at
""" rndstate = random.getstate()
random.setstate(rndstate)
fx, grad = f(x) # Evaluate function value at original point
h = 1e-4 # Iterate over all indexes in x
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
ix = it.multi_index ### try modifying x[ix] with h defined above to compute numerical gradients
### make sure you call random.setstate(rndstate) before calling f(x) each
### time, this will make it
### possible to test cost functions with built in randomness later
### YOUR CODE HERE:
old_val = x[ix]
x[ix] = old_val - h
random.setstate(rndstate)
( fxh1, _ ) = f(x) x[ix] = old_val + h
random.setstate(rndstate)
( fxh2, _ ) = f(x) numgrad = (fxh2 - fxh1)/(2*h)
x[ix] = old_val
### END YOUR CODE # Compare gradients
reldiff = abs(numgrad - grad[ix]) / max(1, abs(numgrad), abs(grad[ix]))
if reldiff > 1e-5:
print "Gradient check failed."
print "First gradient error found at index %s" % str(ix)
print "Your gradient: %f \t Numerical gradient: %f" % (grad[ix], numgrad)
return it.iternext() # Step to next dimension print "Gradient check passed!"

neural.py

import numpy as np
import random from q1_softmax import softmax
from q2_sigmoid import sigmoid, sigmoid_grad
from q2_gradcheck import gradcheck_naive def forward_backward_prop(data, labels, params, dimensions):
"""
Forward and backward propagation for a two-layer sigmoidal network Compute the forward propagation and for the cross entropy cost,
and backward propagation for the gradients for all parameters.
""" ### Unpack network parameters (do not modify)
ofs = 0
Dx, H, Dy = (dimensions[0], dimensions[1], dimensions[2]) W1 = np.reshape(params[ofs:ofs+ Dx * H], (Dx, H))
ofs += Dx * H
b1 = np.reshape(params[ofs:ofs + H], (1, H))
ofs += H
W2 = np.reshape(params[ofs:ofs + H * Dy], (H, Dy))
ofs += H * Dy
b2 = np.reshape(params[ofs:ofs + Dy], (1, Dy)) N, D = data.shape # data --> N x D
# W1 --> D x H
# b1 --> 1 x H
# W2 --> H x V
# b2 --> 1 x V
# labels --> N x V ### YOUR CODE HERE: forward propagation
Z1 = np.dot(data, W1) + b1 # N x H
A1 = sigmoid(Z1) # N x H
Z2 = np.dot(A1, W2) + b2 # N x V
A2 = softmax(Z2) # N x V # cross entropy cost #first method
#B = np.exp(Z2) # N x V
#b = np.sum(B, axis=1) + 1e-8 # N x 1
#z = np.log(b) # N x 1
#cost = np.sum(z) - np.sum(Z2 * labels)
#cost /= N #second method
cost = - np.sum(np.log(A2[labels == 1]))/N
### END YOUR CODE
#cost = b2[0,-1] ### YOUR CODE HERE: backward propagation formula:
delta2 = A2 - labels # N x V delta2=A2-y
gradb2 = np.sum(delta2, axis=0) # 1 x V gradb2<--delta2
gradb2 /= N # 1 x V
gradW2 = np.dot(A1.T, delta2) # H x V gradW2=A1.T*delta2
gradW2 /= N # H x V
delta1 = sigmoid_grad(A1) * np.dot(delta2, W2.T)# N x H delta1=f'(A1)*delta2*W2.T
gradb1 = np.sum(delta1, axis=0) # 1 x H gradb1<--delta1
gradb1 /= N # 1 x H
gradW1 = np.dot(data.T, delta1) # D x H gradW1=X.T*delta1
gradW1 /= N # D x H
### END YOUR CODE ### Stack gradients (do not modify)
grad = np.concatenate((gradW1.flatten(), gradb1.flatten(),
gradW2.flatten(), gradb2.flatten())) return cost, grad def sanity_check():
"""
Set up fake data and parameters for the neural network, and test using
gradcheck.
"""
print "Running sanity check..." N = 20
dimensions = [10, 5, 10]
data = np.random.randn(N, dimensions[0]) # each row will be a datum 20*10
labels = np.zeros((N, dimensions[2]))
for i in xrange(N):
labels[i,random.randint(0,dimensions[2]-1)] = 1 #one-hot vector params = np.random.randn((dimensions[0] + 1) * dimensions[1] + (
dimensions[1] + 1) * dimensions[2], ) gradcheck_naive(lambda params: forward_backward_prop(data, labels, params,
dimensions), params) if __name__ == "__main__":
sanity_check()