排列组合的概念
排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(Arrangement)。
组合:从m个不同的元素中,任取n(n≤m)个元素为一组,叫作从m个不同元素中取出n个元素的一个组合。
排列组合实现代码
上一个项目做的一个水路的路径规划时,用到了排列的数据结构。求任意N个点里M个点的不同顺序的组合个数。
这样求最优路径。下面贴一段不知道哪里找的排列组合的算法。
public class PermutationAndCombination<T>
{
/// <summary>
/// 交换两个变量
/// </summary>
/// <param name="a">变量1</param>
/// <param name="b">变量2</param>
public static void Swap(ref T a, ref T b)
{
T temp = a;
a = b;
b = temp;
}
/// <summary>
/// 递归算法求数组的组合(私有成员)
/// </summary>
/// <param name="list">返回的范型</param>
/// <param name="t">所求数组</param>
/// <param name="n">辅助变量</param>
/// <param name="m">辅助变量</param>
/// <param name="b">辅助数组</param>
/// <param name="M">辅助变量M</param>
private static void GetCombination(ref List<T[]> list, T[] t, int n, int m, int[] b, int M)
{
for (int i = n; i >= m; i--)
{
b[m - ] = i - ;
if (m > )
{
GetCombination(ref list, t, i - , m - , b, M);
}
else
{
if (list == null)
{
list = new List<T[]>();
}
T[] temp = new T[M];
for (int j = ; j < b.Length; j++)
{
temp[j] = t[b[j]];
}
list.Add(temp);
}
}
}
/// <summary>
/// 递归算法求排列(私有成员)
/// </summary>
/// <param name="list">返回的列表</param>
/// <param name="t">所求数组</param>
/// <param name="startIndex">起始标号</param>
/// <param name="endIndex">结束标号</param>
private static void GetPermutation(ref List<T[]> list, T[] t, int startIndex, int endIndex)
{
if (startIndex == endIndex)
{
if (list == null)
{
list = new List<T[]>();
}
T[] temp = new T[t.Length];
t.CopyTo(temp, );
list.Add(temp);
}
else
{
for (int i = startIndex; i <= endIndex; i++)
{
Swap(ref t[startIndex], ref t[i]);
GetPermutation(ref list, t, startIndex + , endIndex);
Swap(ref t[startIndex], ref t[i]);
}
}
}
/// <summary>
/// 求从起始标号到结束标号的排列,其余元素不变
/// </summary>
/// <param name="t">所求数组</param>
/// <param name="startIndex">起始标号</param>
/// <param name="endIndex">结束标号</param>
/// <returns>从起始标号到结束标号排列的范型</returns>
public static List<T[]> GetPermutation(T[] t, int startIndex, int endIndex)
{
if (startIndex < || endIndex > t.Length - )
{
return null;
}
List<T[]> list = new List<T[]>();
GetPermutation(ref list, t, startIndex, endIndex);
return list;
}
/// <summary>
/// 返回数组所有元素的全排列
/// </summary>
/// <param name="t">所求数组</param>
/// <returns>全排列的范型</returns>
public static List<T[]> GetPermutation(T[] t)
{
return GetPermutation(t, , t.Length - );
}
/// <summary>
/// 求数组中n个元素的排列
/// </summary>
/// <param name="t">所求数组</param>
/// <param name="n">元素个数</param>
/// <returns>数组中n个元素的排列</returns>
public static List<T[]> GetPermutation(T[] t, int n)
{
if (n > t.Length)
{
return null;
}
List<T[]> list = new List<T[]>();
List<T[]> c = GetCombination(t, n);
for (int i = ; i < c.Count; i++)
{
List<T[]> l = new List<T[]>();
GetPermutation(ref l, c[i], , n - );
list.AddRange(l);
}
return list;
}
/// <summary>
/// 求数组中n个元素的组合
/// </summary>
/// <param name="t">所求数组</param>
/// <param name="n">元素个数</param>
/// <returns>数组中n个元素的组合的范型</returns>
public static List<T[]> GetCombination(T[] t, int n)
{
if (t.Length < n)
{
return null;
}
int[] temp = new int[n];
List<T[]> list = new List<T[]>();
GetCombination(ref list, t, t.Length, n, temp, n);
return list;
}
}
求组合:求5个数里任意3个数的组合
static void Main(string[] args)
{
int[] IntArr = new int[] { , , , , }; //整型数组
List<int[]> ListCombination = PermutationAndCombination<int>.GetCombination(IntArr, ); //求全部的3-3组合
foreach(int[] arr in ListCombination)
{
foreach(int item in arr)
{
Console.Write(item + " ");
}
Console.WriteLine("");
}
Console.ReadKey();
}
求排列:5个数取3个的任意排列
int[] IntArr = new int[] { , , , , }; //整型数组
List<int[]> ListCombination = PermutationAndCombination<int>.GetPermutation(IntArr, ); //求全部的5取3排列
foreach(int[] arr in ListCombination)
{
foreach(int item in arr)
{
Console.Write(item + " ");
}
Console.WriteLine("");
}
C# 排列组合的更多相关文章
-
学习sql中的排列组合,在园子里搜着看于是。。。
学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...
-
.NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)
今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...
-
【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
-
【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
-
【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
-
hdu1521 排列组合(指数型母函数)
题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数. (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...
-
[leetcode] 题型整理之排列组合
一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...
-
排列组合算法(PHP)
用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...
-
iOS多线程中,队列和执行的排列组合结果分析
本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...
-
leetcode-Combinations 复习复习排列组合
Combinations 题意: 根据给定的n和k,生成从1到n范围内长度为k的排列组合 示例: n=4 k=2 [[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2 ...
随机推荐
-
分享前端Facebook及Twitter第三方登录
最近公司要求做海外的第三方登录:目前只做了Facebook和Twitter;国内百度到的信息太少VPN FQ百度+Google了很久终于弄好了.但是做第三方登录基本上都有个特点就是引入必须的js,设置 ...
-
Android Studio Problem : failed to find style &#39;textviewstyle&#39; in current theme 解决方法
新建一个空白的MainActivity时Preview就出现一个错误: failed to find style 'textviewstyle' in current theme 开始在国内的博客平台 ...
-
C#中的多线程 - 基础知识
原文:http://www.albahari.com/threading/ 文章来源:http://blog.gkarch.com/threading/part1.html 1简介及概念 C# 支持通 ...
-
android学习笔记 Service
Service(服务): 长期后台运行的没有界面的组件 android应用什么地方需要用到服务? 天气预报:后台的连接服务器的逻辑,每隔一段时间获取最新的天气信息.股票显示:后台的连接服务器的逻辑,每 ...
-
Z-BlogPHP 安装出现 (8) Undefined offset: 6 解决方法
有些cp面板的空间会在每个网页头部和页脚增加两个调用的文件,导致zblogPHP安装出错:(8) Undefined offset: 6 主要国外的主机中PHP配置文件两个选项auto_prepend ...
-
ios 中定时器:NSTimer, CADisplayLink, GCD
#import "ViewController.h" #import "RunloopViewController.h" @interface ViewCont ...
-
vim 删除临时文件
今天在用Xshell连接到CentOS后 使用vim 编辑文档 因为中途有事 临时关闭 并没有保存 再一次打开时 vim 提示要恢复 , 但是每次打开文件后到要恢复,于是找到了以下办法 和vim工作 ...
-
【JQuery Plugin】WdatePicker
<div class="timeSelect reportDate"> <span>查询时间:</span> <input type=&q ...
-
[模板] dp套dp &;&; bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
-
Java基础90 MySQL触发器
1.创建触发器 CREATE TRIGGER trigger_name trigger_time trigger_event ON tbl_name FOR EACH ROW trigger_stmt ...