计算点与点之间的距离的平局距离
double
computeCloudResolution (const pcl::PointCloud<PointType>::ConstPtr &cloud)
{
double res = 0.0;
int n_points = ;
int nres;
std::vector<int> indices ();
std::vector<float> sqr_distances ();
pcl::search::KdTree<PointType> tree;
tree.setInputCloud (cloud); for (size_t i = ; i < cloud->size (); ++i)
{
if (! pcl_isfinite ((*cloud)[i].x))
{
continue;
}
//Considering the second neighbor since the first is the point itself.
nres = tree.nearestKSearch (i, , indices, sqr_distances);
if (nres == )
{
res += sqrt (sqr_distances[]);
++n_points;
}
}
if (n_points != )
{
res /= n_points;
}
return res;
}
PCL中
对于 pcl::UniformSampling函数在PCL1.7版本里 该函数放在keypoints
用法如下:
pcl::PointCloud<int> keypointIndices;
filter.compute(keypointIndices);
pcl::copyPointCloud(*cloud,keypointIndices.points, *filteredCloud); 之后在PCL1.8版本里就将该函数放在filters模块里。并在keypoints模块里也包含了这个头文件
#warning UniformSampling is not a Keypoint anymore, use <pcl/filters/uniform_sampling.h> instead.
这是keypoints模块下的说明
用法是:
PointCloud<PointXYZ> output_;
filter.filter (output_);