Fundmentals in Stream Computing

时间:2024-01-16 08:13:08

Fundmentals in Stream Computing

Spark programs are structured on RDDs: they invole reading data from stable storage into the RDD format, performing a number of computations and

data transformations on the RDD, and writing the result RDD to stable storage on collecting to the driver. Thus, most of the power of Spark comes from

its transformation: operations that are defined on RDDs and return RDDs.

Fundmentals in Stream Computing

Fundmentals in Stream Computing

1. Need core underlying layer as basic fundmentals

2. Providing the API to high level

3. Stream computing = core underlying API + Distributed RPC + Computing Template + Cluster of executor

4.What will be computed, the Sequence of computed  and definition of (K,V) are totally in hand of Users through the defined Computing Template.

5. We can say that Distributed Computing is a kind of platform to provide more Computing Template to operate the user data which is splited and distributed in cluster.

6. The ML/Bigdata SQL alike use these Stream API to do there jobs.

7. Remmeber that Stream Computing is a platform or runtime of operating distributed data with Computing Template (transformation API).

8. We can see a lot of common between  StreamComputing and OS, which all provide the API to have operation on Data in Stream and on Hardeware in OS.

9.Stream Computing Runtime has API of Computing Template / Computing Generic;  OS has API of Resource Operation on PC hardware.

Operators transform one or more DataStreams into a new DataStream. Programs can combine multiple transformations into sophisticated dataflow topologies.

ransformation Description
Map
DataStream → DataStream

Takes one element and produces one element. A map function that doubles the values of the input stream:

DataStream<Integer> dataStream = //...
dataStream.map(new MapFunction<Integer, Integer>() {
@Override
public Integer map(Integer value) throws Exception {
return 2 * value;
}
});
FlatMap
DataStream → DataStream

Takes one element and produces zero, one, or more elements. A flatmap function that splits sentences to words:

dataStream.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out)
throws Exception {
for(String word: value.split(" ")){
out.collect(word);
}
}
});
Filter
DataStream → DataStream

Evaluates a boolean function for each element and retains those for which the function returns true. A filter that filters out zero values:

dataStream.filter(new FilterFunction<Integer>() {
@Override
public boolean filter(Integer value) throws Exception {
return value != 0;
}
});
KeyBy
DataStream → KeyedStream

Logically partitions a stream into disjoint partitions. All records with the same key are assigned to the same partition. Internally, keyBy() is implemented with hash partitioning. There are different ways to specify keys.

This transformation returns a KeyedStream, which is, among other things, required to use keyed state.

dataStream.keyBy("someKey") // Key by field "someKey"
dataStream.keyBy(0) // Key by the first element of a Tuple

Attention A type cannot be a key if:

  1. it is a POJO type but does not override the hashCode() method and relies on the Object.hashCode() implementation.
  2. it is an array of any type.
Reduce
KeyedStream → DataStream

A "rolling" reduce on a keyed data stream. Combines the current element with the last reduced value and emits the new value.

A reduce function that creates a stream of partial sums:

keyedStream.reduce(new ReduceFunction<Integer>() {
@Override
public Integer reduce(Integer value1, Integer value2)
throws Exception {
return value1 + value2;
}
});
Fold
KeyedStream → DataStream

A "rolling" fold on a keyed data stream with an initial value. Combines the current element with the last folded value and emits the new value.

A fold function that, when applied on the sequence (1,2,3,4,5), emits the sequence "start-1", "start-1-2", "start-1-2-3", ...

DataStream<String> result =
keyedStream.fold("start", new FoldFunction<Integer, String>() {
@Override
public String fold(String current, Integer value) {
return current + "-" + value;
}
});
Aggregations
KeyedStream → DataStream

Rolling aggregations on a keyed data stream. The difference between min and minBy is that min returns the minimum value, whereas minBy returns the element that has the minimum value in this field (same for max and maxBy).

keyedStream.sum(0);
keyedStream.sum("key");
keyedStream.min(0);
keyedStream.min("key");
keyedStream.max(0);
keyedStream.max("key");
keyedStream.minBy(0);
keyedStream.minBy("key");
keyedStream.maxBy(0);
keyedStream.maxBy("key");
Window
KeyedStream → WindowedStream

Windows can be defined on already partitioned KeyedStreams. Windows group the data in each key according to some characteristic (e.g., the data that arrived within the last 5 seconds). See windows for a complete description of windows.

dataStream.keyBy(0).window(TumblingEventTimeWindows.of(Time.seconds(5))); // Last 5 seconds of data
WindowAll
DataStream → AllWindowedStream

Windows can be defined on regular DataStreams. Windows group all the stream events according to some characteristic (e.g., the data that arrived within the last 5 seconds). See windows for a complete description of windows.

WARNING: This is in many cases a non-parallel transformation. All records will be gathered in one task for the windowAll operator.

dataStream.windowAll(TumblingEventTimeWindows.of(Time.seconds(5))); // Last 5 seconds of data
Window Apply
WindowedStream → DataStream
AllWindowedStream → DataStream

Applies a general function to the window as a whole. Below is a function that manually sums the elements of a window.

Note: If you are using a windowAll transformation, you need to use an AllWindowFunction instead.

windowedStream.apply (new WindowFunction<Tuple2<String,Integer>, Integer, Tuple, Window>() {
public void apply (Tuple tuple,
Window window,
Iterable<Tuple2<String, Integer>> values,
Collector<Integer> out) throws Exception {
int sum = 0;
for (value t: values) {
sum += t.f1;
}
out.collect (new Integer(sum));
}
}); // applying an AllWindowFunction on non-keyed window stream
allWindowedStream.apply (new AllWindowFunction<Tuple2<String,Integer>, Integer, Window>() {
public void apply (Window window,
Iterable<Tuple2<String, Integer>> values,
Collector<Integer> out) throws Exception {
int sum = 0;
for (value t: values) {
sum += t.f1;
}
out.collect (new Integer(sum));
}
});
Window Reduce
WindowedStream → DataStream

Applies a functional reduce function to the window and returns the reduced value.

windowedStream.reduce (new ReduceFunction<Tuple2<String,Integer>>() {
public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) throws Exception {
return new Tuple2<String,Integer>(value1.f0, value1.f1 + value2.f1);
}
});
Window Fold
WindowedStream → DataStream

Applies a functional fold function to the window and returns the folded value. The example function, when applied on the sequence (1,2,3,4,5), folds the sequence into the string "start-1-2-3-4-5":

windowedStream.fold("start", new FoldFunction<Integer, String>() {
public String fold(String current, Integer value) {
return current + "-" + value;
}
});
Aggregations on windows
WindowedStream → DataStream

Aggregates the contents of a window. The difference between min and minBy is that min returns the minimum value, whereas minBy returns the element that has the minimum value in this field (same for max and maxBy).

windowedStream.sum(0);
windowedStream.sum("key");
windowedStream.min(0);
windowedStream.min("key");
windowedStream.max(0);
windowedStream.max("key");
windowedStream.minBy(0);
windowedStream.minBy("key");
windowedStream.maxBy(0);
windowedStream.maxBy("key");
Union
DataStream* → DataStream

Union of two or more data streams creating a new stream containing all the elements from all the streams. Note: If you union a data stream with itself you will get each element twice in the resulting stream.

dataStream.union(otherStream1, otherStream2, ...);
Window Join
DataStream,DataStream → DataStream

Join two data streams on a given key and a common window.

dataStream.join(otherStream)
.where(<key selector>).equalTo(<key selector>)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new JoinFunction () {...});
Interval Join
KeyedStream,KeyedStream → DataStream

Join two elements e1 and e2 of two keyed streams with a common key over a given time interval, so that e1.timestamp + lowerBound <= e2.timestamp <= e1.timestamp + upperBound

// this will join the two streams so that
// key1 == key2 && leftTs - 2 < rightTs < leftTs + 2
keyedStream.intervalJoin(otherKeyedStream)
.between(Time.milliseconds(-2), Time.milliseconds(2)) // lower and upper bound
.upperBoundExclusive(true) // optional
.lowerBoundExclusive(true) // optional
.process(new IntervalJoinFunction() {...});
Window CoGroup
DataStream,DataStream → DataStream

Cogroups two data streams on a given key and a common window.

dataStream.coGroup(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new CoGroupFunction () {...});
Connect
DataStream,DataStream → ConnectedStreams

"Connects" two data streams retaining their types. Connect allowing for shared state between the two streams.

DataStream<Integer> someStream = //...
DataStream<String> otherStream = //... ConnectedStreams<Integer, String> connectedStreams = someStream.connect(otherStream);
CoMap, CoFlatMap
ConnectedStreams → DataStream

Similar to map and flatMap on a connected data stream

connectedStreams.map(new CoMapFunction<Integer, String, Boolean>() {
@Override
public Boolean map1(Integer value) {
return true;
} @Override
public Boolean map2(String value) {
return false;
}
});
connectedStreams.flatMap(new CoFlatMapFunction<Integer, String, String>() { @Override
public void flatMap1(Integer value, Collector<String> out) {
out.collect(value.toString());
} @Override
public void flatMap2(String value, Collector<String> out) {
for (String word: value.split(" ")) {
out.collect(word);
}
}
});
Split
DataStream → SplitStream

Split the stream into two or more streams according to some criterion.

SplitStream<Integer> split = someDataStream.split(new OutputSelector<Integer>() {
@Override
public Iterable<String> select(Integer value) {
List<String> output = new ArrayList<String>();
if (value % 2 == 0) {
output.add("even");
}
else {
output.add("odd");
}
return output;
}
});
Select
SplitStream → DataStream

Select one or more streams from a split stream.

SplitStream<Integer> split;
DataStream<Integer> even = split.select("even");
DataStream<Integer> odd = split.select("odd");
DataStream<Integer> all = split.select("even","odd");
Iterate
DataStream → IterativeStream → DataStream

Creates a "feedback" loop in the flow, by redirecting the output of one operator to some previous operator. This is especially useful for defining algorithms that continuously update a model. The following code starts with a stream and applies the iteration body continuously. Elements that are greater than 0 are sent back to the feedback channel, and the rest of the elements are forwarded downstream. See iterations for a complete description.

IterativeStream<Long> iteration = initialStream.iterate();
DataStream<Long> iterationBody = iteration.map (/*do something*/);
DataStream<Long> feedback = iterationBody.filter(new FilterFunction<Long>(){
@Override
public boolean filter(Integer value) throws Exception {
return value > 0;
}
});
iteration.closeWith(feedback);
DataStream<Long> output = iterationBody.filter(new FilterFunction<Long>(){
@Override
public boolean filter(Integer value) throws Exception {
return value <= 0;
}
});
Extract Timestamps
DataStream → DataStream

Extracts timestamps from records in order to work with windows that use event time semantics. See Event Time.

stream.assignTimestamps (new TimeStampExtractor() {...});