最近在做一个分类的任务,输入为3通道车型图片,输出要求将这些图片对车型进行分类,最后分类类别总共是30个。
开始是试用了实验室师姐的方法采用了VGGNet的模型对车型进行分类,据之前得实验结果是训练后最高能达到92%的正确率,在采用了ImageNet训练过的DataLayer之后,可以达到97%的正确率,由于我没有进行长时间的运行测试,运行了十几个小时最高达到了92%的样子。
后来是尝试使用Deep Residual Learning的ImageNet(以后简称ResNet)的实现方法,十几个小时的训练可以达到94%的正确率,由于ResNet-50的模型太大,没有进行长时间的测试,不知道能否达到跟ImageNet最好结果差不多的效果。
下面对ResNet的模型进行简单的介绍。
ResNet的原理如下:
首先假设我们简单的一层:输入——>中间层——>输出。那么假设中间层的函数为F(x),我们得到的结果就是F(x)。那么对于ResNet,我们假设我们要拟合的函数为H(x),我改变了一种方式,我将输入跳过中间层,直接与输出相连。如图:(论文原图)。
即我们的F(x)是由这个公式得到的:F(x):=H(x)-x。也就是说,我们要拟合的函数是H(x)=F(x)+x。上述是一个简单的例子,在实际过程中,这H(x)等式右边的这两个分量是可以加上参数的。最终的公式为:Ws还有一个目的就是调整x的纬数,也就是当输入与输出纬数不相同时,Ws要负责将二者的纬数变为相同。
那么这样做有什么好处?在之前的实验中,研究者们发现,理论上来说,一个层数越多的神经网络,那么它所能拟合的函数就越复杂,得出的错误率就应该越小,但是研究者们得出的结论却并不是这样。如图:
在20-Layer和56-Layer的比较中发现,56 -Layer无论是Training error还是Test error都明显高于20-Layer,这与理论上的关系并不符合。这个问题叫做degradation problem。这个问题表示了不是所有的函数都是很容易去优化的。
所以这个方法直接将x加到输出端,在理论上来说,如果这个Identity项是最优的,那么旁边的非线性层的参数应该全部为0,然后一层Identity Mapping就代表了最优函数,但是通常情况下,这个x不是最优的,但是通常情况下,如果Identity Mapping接近于最优函数,那么这一项可以很好的帮助优化。他对于更深层的网络传递到后来的误差就会越小。
在我这次的实验中,采用了ResNet-50的模型。整个模型可参考:http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006
这里我拿出一个部分进行介绍:
在这是第一个Res层,最上面是一个输入层,紧接着一个MaxPooling。res2a_branch代表的是卷积层,BN代表的是BatchNormalization。在这里作者对Identity项也进行了一次卷积操作。这个卷积操作是1*1的卷积。在原文中,作者介绍了当输入输出纬数不同时,有两种选择:选择A,如果纬数不同,那么多余的纬数采用zero-padding,这样不会增加参数。选择B,如果纬数不同,那么采用1*1卷积来将纬数保持平衡。
在这个模型中采用的是选择B。
当纬数相同的时候,输入是直接接到输出的,是没有左边这个模块的。
经过测试,在训练相同时间(十余个小时)的情况下,VGG最高到92%,ResNet-50的TOP1为6%。
全文参考Deep Residual Learning for Image Recognition,作者:Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun。
附torch实现代码https://github.com/KaimingHe/deep-residual-networks