题目:
给个n个点的多边形,n个点按顺序给出,给个点m,判断m在不在多边形内部
题解:
网上有两种方法,这里写一种:射线法
大体的思想是:以这个点为端点,做一条平行与x轴的射线(代码中射线指向x轴正方向)
如果交点个数为奇数的话就在内部,如果为偶数(包括0)就在外部
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 105
using namespace std;
int n,m;
struct point//点(向量的结构体)
{
int x,y;
point() {}//初始化
point (int _x,int _y) :
x(_x),y(_y) {};//用一对坐标初始化点
inline point operator + (const point &rhs) const//向量加法
{
return point(x+rhs.x,y+rhs.y);
}
inline point operator - (const point &rhs) const//向量减法
{
return point(x-rhs.x,y-rhs.y);
}
inline int operator * (const point &rhs) const//向量叉乘
//向量叉乘的几何意义是以两个向量为邻边的平行四边形的有向面积 也就是|a|*|b|*sin<a,b> 这里的sin<a,b>决定了
//如果a,b是逆时针的,那么sin<a,b>大于0,有向面积大于0,反之<0
{
return x*rhs.y-y*rhs.x;
}
friend inline int dot(const point &lhs,const point &rhs)//向量点乘
{
return lhs.x*rhs.x+lhs.y*rhs.y;
}
}q;
inline int check(const point &u,const point &v,const point &p)//判断点是不是在线段上
//u,v是线段端点,p是点
{
int det=(u-p)*(v-p);//如果向量(u-p)*(v-p)==0就说明u,v,p共线(因为没面积)
if (det!=0) return 0;
int Dot=dot(u-p,v-p);//如果(u-p)点乘(v-p)<=0 就说明点在线段上
return Dot<=0;
}
struct polygon//多边形结构体
{
int n;
point p[N];
void init(int _n)
{
n=_n;
for (int i=0;i<n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
p[n]=p[0];
if (Area()<0) reverse(p,p+n);//通过判断多边形的有向面积来把点规范成逆时针的
p[n]=p[0];
}
inline int Area() const
//计算多边形的有向面积(如果点是逆时针的话就是正的,否则是负的)
{
int ret=0;
for (int i=0;i<n;i++)
ret+=p[i]*p[i+1];
return ret=0;
}
bool inner (const point &q)//判断点是不是在多边形内部
{
int cnt=0;
for (int i=0;i<n;i++)
{
if (check(p[i],p[i+1],q)) return 1;//如果点在线段上显然可以
int d1=p[i].y-q.y,d2=p[i+1].y-q.y;
int det=(p[i]-q)*(p[i+1]-q);
if ( (det>=0 && d1<0 && d2>=0) ||
(det<=0 && d1>=0 && d2<0)) ++cnt;//第一个条件是判断p在多边形内的时候,第二个是判断p在多边形外的时候
}
return cnt&1;
}
}P; int main()
{
for (int tt=1;;tt++)
{
scanf("%d",&n);
if (n==0) break;
scanf("%d",&m);
P.init(n);
if (tt!=1)
putchar('\n');
printf("Problem %d:\n",tt);
while (m--)
{
scanf("%d%d",&q.x,&q.y);
if (P.inner(q)) puts("Within");
else puts("Outside");
}
}
return 0;
}