flask部署深度学习模型

时间:2023-01-14 09:26:49

flask部署深度学习模型

作为著名Python web框架之一的Flask,具有简单轻量、灵活、扩展丰富且上手难度低的特点,因此成为了机器学习和深度学习模型上线跑定时任务,提供API的首选框架。

众所周知,Flask默认不支持非阻塞IO的,当请求A还未完成时候,请求B需要等待请求A完成后才能被处理,所以效率非常低。但是线上任务通常需要异步、高并发等需求,本文总结一些在日常使用过程中所常用的技巧。

一、前沿

异步和多线程有什么区别?其实,异步是目的,而多线程是实现这个目的的方法。异步是说,A发起一个操作后(一般都是比较耗时的操作,如果不耗时的操作就没有必要异步了),可以继续自顾自的处理它自己的事儿,不用干等着这个耗时操作返回。

实现异步可以采用多线程技术或则交给另外的进程来处理,详解常见这里

二、实现方法

  • Flask启动自带方法
  • 采用gunicorn部署

    1、Flask中自带方法实现

    run.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018-12-01 16:37
# @Author  : mokundong
from flask import Flask
import socket
from time import sleep  

myhost = socket.gethostbyname(socket.gethostname())
app = Flask(__name__)  

@app.route('/job1')
def some_long_task1():
    print("Task #1 started!")
    sleep(10)
    print("Task #1 is done!")  

@app.route('/job2')
def some_long_task2(arg1, arg2):
    print("Task #2 started with args: %s %s!" % (arg1, arg2))
    sleep(5)
    print("Task #2 is done!")  

if __name__ == '__main__':
    app.run(host=myhost,port=5000,threaded=True)

app.run(host=xxx,port=xx,threaded=True)
中threaded开启后则不需要等队列。

2、gunicorn部署

Gunicorn 是一个高效的Python WSGI Server,通常用它来运行 wsgi application 或者 wsgi framework(如Django,Paster,Flask),地位相当于Java中的Tomcat。gunicorn 会启动一组 worker进程,所有worker进程公用一组listener,在每个worker中为每个listener建立一个wsgi server。每当有HTTP链接到来时,wsgi server创建一个协程来处理该链接,协程处理该链接的时候,先初始化WSGI环境,然后调用用户提供的app对象去处理HTTP请求。
关于gunicorn的详细说明,可以参考这里

使用命令行启动gunicorn有两种方式获取配置项,一种是在命令行配置,一种是在配置文件中获取。

run.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018-12-01 17:00
# @Author  : mokundong
from flask import Flask
from time import sleep  

app = Flask(__name__)  

@app.route('/job1')
def some_long_task1():
    print("Task #1 started!")
    sleep(10)
    print("Task #1 is done!")  

@app.route('/job2')
def some_long_task2(arg1, arg2):
    print("Task #2 started with args: %s %s!" % (arg1, arg2))
    sleep(5)
    print("Task #2 is done!")  

if __name__ == '__main__':
    app.run()

命令行配置

gunicorn --workers=4 --bind=127.0.0.1:8000 run:app

更多配置见官网

配置文件获取配置

gunicorn_config.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018-12-01 17:10
# @Author  : mokundong
import os
import socket
import multiprocessing
import gevent.monkey

gevent.monkey.patch_all()
myhost = socket.gethostbyname(socket.gethostname())  

debug = False
loglevel = 'info'
hosts = get_host_ip()
bind = hosts+":5000"
timeout = 30      #超时

pidfile = "log/gunicorn.pid"
accesslog = "log/access.log"
errorlog = "log/debug.log"

daemon = True #意味着开启后台运行,默认为False
workers = 4 # 启动的进程数
threads = 2 #指定每个进程开启的线程数
worker_class = 'gevent' #默认为sync模式,也可使用gevent模式。
x_forwarded_for_header = 'X-FORWARDED-FOR'

启动命令如下

gunicorn -c gunicorn_config.py run:app

三、补充

1、关于线程的补充

在工作中我还遇到一种情况,当一个请求过来后,我需要两种回应,一个是及时返回app运行结果,第二个响应是保存数据到日志或者数据库。往往我们在写数据的过程中会花销一定的时间,导致结果返回会有所延迟,因此我们需要用两个线程处理这两个任务,那么我们如下处理。

run.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018-12-01 17:20
# @Author  : mokundong
from flask import Flask,request
from time import sleep
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor(2)
app = Flask(__name__)

@app.route('/job')
def run_jobs():
    executor.submit(some_long_task1)
    executor.submit(some_long_task2, 'hello', 123)
    return 'Two jobs was launched in background!'
def some_long_task1():
    print("Task #1 started!")
    sleep(10)
    print("Task #1 is done!")

def some_long_task2(arg1, arg2):
    print("Task #2 started with args: %s %s!" % (arg1, arg2))
    sleep(5)
    print("Task #2 is done!")

if __name__ == '__main__':
    app.run()

2、关于获取IP的补充

上述代码中通过获取hostname,然后再通过hostname反查处机器的IP。这个方法是不推荐的。因为很多的机器没有规范这个hostname的设置。
另外就是有些服务器会在 /etc/hosts 中添加本机的hostname的地址,这个做法也不是不可以,但是如果设置成了 127.0.0.1,那么获取出来的IP就都是这个地址了。
这里给出一种优雅的方式获取IP,利用 UDP 协议来实现的,生成一个UDP包,把自己的 IP 放如到 UDP 协议头中,然后从UDP包中获取本机的IP。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2018-12-01 17:30
# @Author  : mokundong
# 可以封装成函数,方便 Python 的程序调用
import socket

def get_host_ip():
    try:
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        s.connect(('8.8.8.8', 80))
        ip = s.getsockname()[0]
    finally:
        s.close()

    return ip

总结

当然推荐使用gunicorn部署多线程,Flask自带的,emmmm,测试玩儿玩儿吧。
在写作过程中才发现自己知识漏洞不是一般多,共勉!

flask部署深度学习模型的更多相关文章

  1. PyTorch如何构建深度学习模型?

    简介 每过一段时间,就会有一个深度学习库被开发,这些深度学习库往往可以改变深度学习领域的景观.Pytorch就是这样一个库. 在过去的一段时间里,我研究了Pytorch,我惊叹于它的操作简易.Pyto ...

  2. Apple的Core ML3简介——为iPhone构建深度学习模型(附代码)

    概述 Apple的Core ML 3是一个为开发人员和程序员设计的工具,帮助程序员进入人工智能生态 你可以使用Core ML 3为iPhone构建机器学习和深度学习模型 在本文中,我们将为iPhone ...

  3. 用 Java 训练深度学习模型,原来可以这么简单!

    本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan V ...

  4. CUDA上深度学习模型量化的自动化优化

    CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数 ...

  5. 用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈

    用TVM在硬件平台上部署深度学习工作负载的端到端 IR 堆栈 深度学习已变得无处不在,不可或缺.这场革命的一部分是由可扩展的深度学习系统推动的,如滕索弗洛.MXNet.咖啡和皮托奇.大多数现有系统针对 ...

  6. CUDA上的量化深度学习模型的自动化优化

    CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参 ...

  7. TVM将深度学习模型编译为WebGL

    使用TVM将深度学习模型编译为WebGL TVM带有全新的OpenGL / WebGL后端! OpenGL / WebGL后端 TVM已经瞄准了涵盖各种平台的大量后端:CPU,GPU,移动设备等.这次 ...

  8. AI佳作解读系列&lpar;一&rpar;——深度学习模型训练痛点及解决方法

    1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...

  9. 『高性能模型』Roofline Model与深度学习模型的性能分析

    转载自知乎:Roofline Model与深度学习模型的性能分析 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体的计算平台(例如CPU / GPU / ASIC 等 ...

随机推荐

  1. mongoDB研究笔记:复制集概述

    自我学习,仅供参考: 数据库总是会遇到各种失败的场景,如网络连接断开.断电等,尽管journaling日志功能也提供了数据恢复的功能,但journaling通常是针对单个节点来说的,只能保证单节点数据 ...

  2. 最短路径问题——dijkstra算法

    仅谈谈个人对dijkstra的理解,dijkstra算法是基于邻接表实现的,用于处理单源最短路径问题(顺便再提一下,处理单源最短路径问题的还有bellman算法).开辟一个结构体,其变量为边的终点和边 ...

  3. Mvc4页面缓存设置Cookie导致缓存失效

    [OutputCache(Duration = 60, VaryByParam = "none")]        public ActionResult Index()      ...

  4. python基础之正则表达式。

    简介 就其本质而言,正则表达式是内嵌在python内,由re模块实现,小型的专业化语言,最后由c写的匹配引擎执行.正则表达式(regular expression)描述了一种字符串匹配的模式,可以用来 ...

  5. eclipse菜单解释及中英对照《二》

    上篇文章主要介绍了eclipse中每个大的标题下的中英文及其用法. 感谢http://blog.csdn.net/li_jinjian2005/article/details/2831641这个博主. ...

  6. linux ps命令(转载)

    来源:http://www.cnblogs.com/peida/archive/2012/12/19/2824418.html Linux中的ps命令是Process Status的缩写.ps命令用来 ...

  7. Android SimpleAdapter源码详解

    一直没认真看过android的源码,也不太敢看,稀里糊涂也敲了一年的代码,现在想好好学习了,就把常用的源码都看了一下,小伙伴们来涨姿势吧,有错误的地方,直接指出,我脸厚不怕丢人.来吧. 刚开始学and ...

  8. dirlock&lowbar;windows&period;go

    package dirlock type DirLock struct {     dir string } func New(dir string) *DirLock {     return &a ...

  9. 最详细的C&plus;&plus;对应C&num;的数据类型转换

    C++ ---------------------- C# LDWORD ----------------IntPtr LLONG-------------------Intptr bool ---- ...

  10. Confluence 6 Oracle 测试你的数据库连接

    在你的数据库设置界面,有一个 测试连接(Test connection)按钮可以检查: Confluence 可以连接你的数据库服务器 数据库的字符集编码是否正确 你的数据库用户是否具有需要的权限 你 ...