- EXPLAIN SELECT * FROM tenk1;
- QUERY PLAN
- -------------------------------------------------------------
- Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)
因为这个查询没有WHERE子句,所以必须扫描表中的所有行,所以规划器选择使用简单的顺序扫描规划。括号中的数字从左到右依次是:
- 评估开始消耗。这是可以开始输出前的时间,比如排序节点的排序的时间。
- 评估总消耗。假设查询从执行到结束的时间。有时父节点可能停止这个过程,比如LIMIT子句。
- 评估查询节点的输出行数,假设该节点执行结束。
- 评估查询节点的输出行的平均字节数。
- EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;
- QUERY PLAN
- ------------------------------------------------------------
- Seq Scan on tenk1 (cost=0.00..483.00 rows=7001 width=244)
- Filter: (unique1 < 7000)
- EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;
- QUERY PLAN
- ------------------------------------------------------------------------------
- Bitmap Heap Scan on tenk1 (cost=5.07..229.20 rows=101 width=244)
- Recheck Cond: (unique1 < 100)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
- Index Cond: (unique1 < 100)
查询规划器决定使用两步规划:首先子查询节点查看索引找到符合条件的记录索引,然后外层查询节点将这些记录从表中提取出来。分别提取数据的成本要高于顺序读取,但因为不需要读取所有磁盘页,所以总消耗比较小。(其中Bitmap是系统排序的一种机制)
- EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx';
- QUERY PLAN
- ------------------------------------------------------------------------------
- Bitmap Heap Scan on tenk1 (cost=5.04..229.43 rows=1 width=244)
- Recheck Cond: (unique1 < 100)
- Filter: (stringu1 = 'xxx'::name)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
- Index Cond: (unique1 < 100)
增加的条件stringu1='xxx'减少了输出记录数的评估,但没有减少时间消耗,应为系统还是要查询相同数量的记录。请注意stringu1不是索引条件。
- EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;
- QUERY PLAN
- -------------------------------------------------------------------------------------
- Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244)
- Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
- -> BitmapAnd (cost=25.08..25.08 rows=10 width=0)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
- Index Cond: (unique1 < 100)
- -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)
- Index Cond: (unique2 > 9000)
这个查询条件的两个字段都有索引,索引不需要filre。
- EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;
- QUERY PLAN
- -------------------------------------------------------------------------------------
- Limit (cost=0.29..14.48 rows=2 width=244)
- -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..71.27 rows=10 width=244)
- Index Cond: (unique2 > 9000)
- Filter: (unique1 < 100)
这条查询的where条件和上面的一样,只是增加了LIMIT,所以不是所有数据都需要返回,规划器改变了规划。在索引扫描节点总消耗和返回记录数是运行玩查询之后的数值,但Limit节点预期时间消耗是15,所以总时间消耗是15.增加LIMIT会使启动时间小幅增加(0.25->0.29)。
- EXPLAIN SELECT *
- FROM tenk1 t1, tenk2 t2
- WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;
- QUERY PLAN
- --------------------------------------------------------------------------------------
- Nested Loop (cost=4.65..118.62 rows=10 width=488)
- -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
- Recheck Cond: (unique1 < 10)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
- Index Cond: (unique1 < 10)
- -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244)
- Index Cond: (unique2 = t1.unique2)
这个规划中有一个内连接的节点,它有两个子节点。节点摘要行的缩进反映了规划树的结构。最外层是一个连接节点,子节点是一个Bitmap扫描。外部节点位图扫描的消耗和记录数如同我们使用SELECT...WHERE unique1 < 10,因为这时t1.unique2 = t2.unique2还不相关。接下来为每一个从外部节点得到的记录运行内部查询节点。这里外部节点得到的数据的t1.unique2值是可用的,所以我们得到的计划和SELECT...WHEREt2.unique2=constant的情况类似。(考虑到缓存的因素评估的消耗可能要小一些)
- EXPLAIN SELECT *
- FROM tenk1 t1, tenk2 t2
- WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;
- QUERY PLAN
- ---------------------------------------------------------------------------------------------
- Nested Loop (cost=4.65..49.46 rows=33 width=488)
- Join Filter: (t1.hundred < t2.hundred)
- -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
- Recheck Cond: (unique1 < 10)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
- Index Cond: (unique1 < 10)
- -> Materialize (cost=0.29..8.51 rows=10 width=244)
- -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10 width=244)
- Index Cond: (unique2 < 10)
条件t1.hundred<t2.hundred不在tenk2_unique2索引中,所以这个条件出现在连接节点中。这将减少连接节点的评估输出记录数,但不会改变子节点的扫描数。
- EXPLAIN SELECT *
- FROM tenk1 t1, tenk2 t2
- WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;
- QUERY PLAN
- ------------------------------------------------------------------------------------------
- Hash Join (cost=230.47..713.98 rows=101 width=488)
- Hash Cond: (t2.unique2 = t1.unique2)
- -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244)
- -> Hash (cost=229.20..229.20 rows=101 width=244)
- -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244)
- Recheck Cond: (unique1 < 100)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
- Index Cond: (unique1 < 100)
这里规划器选择使用hash join,将一个表的数据存入内存中的哈希表,然后扫描另一个表并和哈希表中的每一条数据进行匹配。
- EXPLAIN SELECT *
- FROM tenk1 t1, onek t2
- WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;
- QUERY PLAN
- ------------------------------------------------------------------------------------------
- Merge Join (cost=198.11..268.19 rows=10 width=488)
- Merge Cond: (t1.unique2 = t2.unique2)
- -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101 width=244)
- Filter: (unique1 < 100)
- -> Sort (cost=197.83..200.33 rows=1000 width=244)
- Sort Key: t2.unique2
- -> Seq Scan on onek t2 (cost=0.00..148.00 rows=1000 width=244)
Merge Join需要已经排序的输入数据。在这个规划中按正确顺序索引扫描tenk1的数据,但是对onek表执行排序和顺序扫描,因为需要在这个表中查询多条数据。因为索引扫描需要访问不连续的磁盘,所以索引扫描多条数据时会频繁使用排序顺序扫描(Sequential-scan-and-sort)。
- SET enable_sort = off;
- EXPLAIN SELECT *
- FROM tenk1 t1, onek t2
- WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;
- QUERY PLAN
- ------------------------------------------------------------------------------------------
- Merge Join (cost=0.56..292.65 rows=10 width=488)
- Merge Cond: (t1.unique2 = t2.unique2)
- -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101 width=244)
- Filter: (unique1 < 100)
- -> Index Scan using onek_unique2 on onek t2 (cost=0.28..224.79 rows=1000 width=244)
显示测结果表明,规划器认为索引扫描比排序顺序扫描消耗高12%。当然下一个问题就是规划器的评估为什么是正确的。我们可以通过EXPLAIN ANALYZE进行考察。
- EXPLAIN ANALYZE SELECT *
- FROM tenk1 t1, tenk2 t2
- WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;
- QUERY PLAN
- ---------------------------------------------------------------------------------------------------------------------------------
- Nested Loop (cost=4.65..118.62 rows=10 width=488) (actual time=0.128..0.377 rows=10 loops=1)
- -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244) (actual time=0.057..0.121 rows=10 loops=1)
- Recheck Cond: (unique1 < 10)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0) (actual time=0.024..0.024 rows=10 loops=1)
- Index Cond: (unique1 < 10)
- -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244) (actual time=0.021..0.022 rows=1 loops=10)
- Index Cond: (unique2 = t1.unique2)
- Total runtime: 0.501 ms
注意,实际时间(actual time)的值是已毫秒为单位的实际时间,cost是评估的消耗,是个虚拟单位时间,所以他们看起来不匹配。
- EXPLAIN ANALYZE SELECT *
- FROM tenk1 t1, tenk2 t2
- WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous;
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------------------------
- Sort (cost=717.34..717.59 rows=101 width=488) (actual time=7.761..7.774 rows=100 loops=1)
- Sort Key: t1.fivethous
- Sort Method: quicksort Memory: 77kB
- -> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual time=0.711..7.427 rows=100 loops=1)
- Hash Cond: (t2.unique2 = t1.unique2)
- -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual time=0.007..2.583 rows=10000 loops=1)
- -> Hash (cost=229.20..229.20 rows=101 width=244) (actual time=0.659..0.659 rows=100 loops=1)
- Buckets: 1024 Batches: 1 Memory Usage: 28kB
- -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244) (actual time=0.080..0.526 rows=100 loops=1)
- Recheck Cond: (unique1 < 100)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.049..0.049 rows=100 loops=1)
- Index Cond: (unique1 < 100)
- Total runtime: 8.008 ms
排序节点(Sort)显示排序类型(一般是在内存还是在磁盘)和使用多少内存。哈希节点(Hash)显示哈希桶和批数以及使用内存的峰值。
- EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;
- QUERY PLAN
- ---------------------------------------------------------------------------------------------------------
- Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual time=0.016..5.107 rows=7000 loops=1)
- Filter: (ten < 7)
- Rows Removed by Filter: 3000
- Total runtime: 5.905 ms
这个值在join节点上尤其有价值。"Rows Removed"只有在过滤条件过滤掉数据时才显示。
- EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';
- QUERY PLAN
- ------------------------------------------------------------------------------------------------------
- Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual time=0.044..0.044 rows=0 loops=1)
- Filter: (f1 @> '((0.5,2))'::polygon)
- Rows Removed by Filter: 4
- Total runtime: 0.083 ms
规划器认为(正确的)这样的表太小以至于不需要索引扫描,所以采用顺序扫描所有行经行条件检查。
- SET enable_seqscan TO off;
- EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------
- Index Scan using gpolygonind on polygon_tbl (cost=0.13..8.15 rows=1 width=32) (actual time=0.062..0.062 rows=0 loops=1)
- Index Cond: (f1 @> '((0.5,2))'::polygon)
- Rows Removed by Index Recheck: 1
- Total runtime: 0.144 ms
这里我们可以看到索引返回一条候选数据,但被过滤条件拒绝。这是因为GiST索引在多边形包含检测上是松散的"lossy":它实际返回哪些和多边形交叠的数据,然后我们还需要针对这些数据做包含检测。
- EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;
- QUERY PLAN
- ---------------------------------------------------------------------------------------------------------------------------------
- Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244) (actual time=0.323..0.342 rows=10 loops=1)
- Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
- Buffers: shared hit=15
- -> BitmapAnd (cost=25.08..25.08 rows=10 width=0) (actual time=0.309..0.309 rows=0 loops=1)
- Buffers: shared hit=7
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.043..0.043 rows=100 loops=1)
- Index Cond: (unique1 < 100)
- Buffers: shared hit=2
- -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0) (actual time=0.227..0.227 rows=999 loops=1)
- Index Cond: (unique2 > 9000)
- Buffers: shared hit=5
- Total runtime: 0.423 ms
- BEGIN;
- EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100;
- QUERY PLAN
- --------------------------------------------------------------------------------------------------------------------------------
- Update on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual time=14.628..14.628 rows=0 loops=1)
- -> Bitmap Heap Scan on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual time=0.101..0.439 rows=100 loops=1)
- Recheck Cond: (unique1 < 100)
- -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0) (actual time=0.043..0.043 rows=100 loops=1)
- Index Cond: (unique1 < 100)
- Total runtime: 14.727 ms
- ROLLBACK;
当查询是INSERT,UPDATE或DELETE命令时,在*节点是实施对表的变更。在这下面的节点实行定位旧数据计算新数据的工作。所以我们看到一样的bitmap索引扫描,并返回给Update节点。值得注意的是虽然修改数据的节点可能需要相当长的运行时间(在这里它消耗了大部分的时间),规划器却没有再评估时间中添加任何消耗,这是因为更新工作对于任何查询规划都是一样的,所以并不影响规划器的决策。