I have an image called: Image
and a running container called: container
. I want to install pytorch
and anacoda
. what's the easiest way to do this? Do I have to change the dockerfile
and build a new image? Thanks a lot.
我有一个名为:image的映像和一个名为:container的运行容器。我想安装pytorch和anacoda最简单的方法是什么?我是否需要更改dockerfile并构建一个新的映像?非常感谢。
1 个解决方案
#1
2
Yes, the best thing is to build your image in such a way it has the python modules are in there.
是的,最好的方法是以python模块在其中的方式构建映像。
Here is an example. I build an image with the build dependencies:
这是一个例子。我用构建依赖项构建映像:
$ docker build -t oz123/alpine-test-mycoolapp:0.5 - < Image
Sending build context to Docker daemon 2.56 kB
Step 1 : FROM alpine:3.5
---> 88e169ea8f46
Step 2 : ENV MB_VERSION 3.1.4
---> Running in 4587d36fa4ae
---> b7c55df49803
Removing intermediate container 4587d36fa4ae
Step 3 : ENV CFLAGS -O2
---> Running in 19fe06dcc314
---> 31f6a4f27d4b
Removing intermediate container 19fe06dcc314
Step 4 : RUN apk add --no-cache python3 py3-pip gcc python3-dev py3-cffi file git curl autoconf automake py3-cryptography linux-headers musl-dev libffi-dev openssl-dev build-base
---> Running in f01b60b1b5b9
fetch http://dl-cdn.alpinelinux.org/alpine/v3.5/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.5/community/x86_64/APKINDEX.tar.gz
(1/57) Upgrading musl (1.1.15-r5 -> 1.1.15-r6)
(2/57) Upgrading zlib (1.2.8-r2 -> 1.2.11-r0)
(3/57) Installing m4 (1.4.17-r1)
(4/57) Installing perl (5.24.0-r0)
(5/57) Installing autoconf (2.69-r0)
(6/57) Installing automake (1.15-r0)
(7/57) Installing binutils-libs (2.27-r1)
...
Note, I am installing Python's pip inside the image, so later I can download packages from pypi. Packages like numpy might require a C compiler and tool chain, so I am installing these too.
注意,我正在映像中安装Python的pip,因此稍后我可以从pypi下载包。像numpy这样的包可能需要C编译器和工具链,所以我也在安装它们。
After building the packages which require the build tools chain I remove the tool chain packages:
在构建需要构建工具链的包之后,我删除了工具链包:
RUN apk del file pkgconf autoconf m4 automake perl g++ libstdc++
After you have your base image, you can run your application code in an image building on top of it:
有了基本映像后,可以在上面的映像构建中运行应用程序代码:
$ cat Dockerfile
FROM oz123/alpine-test-mycoolapp
ADD . /code
WORKDIR /code
RUN pip3 install -r requirements.txt -r requirements_dev.txt
RUN pip3 install -e .
RUN make clean
CMD ["pytest", "-vv", "-s"]
I simply run this with docker
.
我只是用docker运行这个。
#1
2
Yes, the best thing is to build your image in such a way it has the python modules are in there.
是的,最好的方法是以python模块在其中的方式构建映像。
Here is an example. I build an image with the build dependencies:
这是一个例子。我用构建依赖项构建映像:
$ docker build -t oz123/alpine-test-mycoolapp:0.5 - < Image
Sending build context to Docker daemon 2.56 kB
Step 1 : FROM alpine:3.5
---> 88e169ea8f46
Step 2 : ENV MB_VERSION 3.1.4
---> Running in 4587d36fa4ae
---> b7c55df49803
Removing intermediate container 4587d36fa4ae
Step 3 : ENV CFLAGS -O2
---> Running in 19fe06dcc314
---> 31f6a4f27d4b
Removing intermediate container 19fe06dcc314
Step 4 : RUN apk add --no-cache python3 py3-pip gcc python3-dev py3-cffi file git curl autoconf automake py3-cryptography linux-headers musl-dev libffi-dev openssl-dev build-base
---> Running in f01b60b1b5b9
fetch http://dl-cdn.alpinelinux.org/alpine/v3.5/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.5/community/x86_64/APKINDEX.tar.gz
(1/57) Upgrading musl (1.1.15-r5 -> 1.1.15-r6)
(2/57) Upgrading zlib (1.2.8-r2 -> 1.2.11-r0)
(3/57) Installing m4 (1.4.17-r1)
(4/57) Installing perl (5.24.0-r0)
(5/57) Installing autoconf (2.69-r0)
(6/57) Installing automake (1.15-r0)
(7/57) Installing binutils-libs (2.27-r1)
...
Note, I am installing Python's pip inside the image, so later I can download packages from pypi. Packages like numpy might require a C compiler and tool chain, so I am installing these too.
注意,我正在映像中安装Python的pip,因此稍后我可以从pypi下载包。像numpy这样的包可能需要C编译器和工具链,所以我也在安装它们。
After building the packages which require the build tools chain I remove the tool chain packages:
在构建需要构建工具链的包之后,我删除了工具链包:
RUN apk del file pkgconf autoconf m4 automake perl g++ libstdc++
After you have your base image, you can run your application code in an image building on top of it:
有了基本映像后,可以在上面的映像构建中运行应用程序代码:
$ cat Dockerfile
FROM oz123/alpine-test-mycoolapp
ADD . /code
WORKDIR /code
RUN pip3 install -r requirements.txt -r requirements_dev.txt
RUN pip3 install -e .
RUN make clean
CMD ["pytest", "-vv", "-s"]
I simply run this with docker
.
我只是用docker运行这个。