【转载】Spark SQL之External DataSource外部数据源

时间:2024-01-14 08:11:08

http://blog.csdn.net/oopsoom/article/details/42061077

一、Spark SQL External DataSource简介

随着Spark1.2的发布,Spark SQL开始正式支持外部数据源。Spark SQL开放了一系列接入外部数据源的接口,来让开发者可以实现。

这使得Spark SQL支持了更多的类型数据源,如json, parquet, avro, csv格式。只要我们愿意,我们可以开发出任意的外部数据源来连接到Spark SQL。之前大家说的支持HBASE,Cassandra都可以用外部数据源的方式来实现无缝集成。

二、External DataSource

拿Spark1.2的json为例,它支持已经改为了实现了外部数据源的接口方式。所以除了先前我们操作json的API,又多了一种DDL创建外部数据源的方式。

parquetFile的操作方式也如下类似,就不一一列举了。

2.1 SQL方式 CREATE TEMPORARY TABLE USING OPTIONS

在Spark1.2之后,支持了一种CREATE TEMPORARY TABLE USING OPTIONS的DDL语法来创建外部数据源的表。

CREATE TEMPORARY TABLE jsonTable
USING org.apache.spark.sql.json
OPTIONS (
path '/path/to/data.json'
)

1、操作示例:

我们拿example下people.json文件来做示例。

shengli-mac$ cat /Users/shengli/git_repos/spark/examples/src/main/resources/people.json
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}

2、DDL创建外部数据源表jsonTable:

14/12/21 16:32:14 INFO repl.SparkILoop: Created spark context..
Spark context available as sc. scala> import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SQLContext scala> val sqlContext = new SQLContext(sc)
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@7be62956 scala> import sqlContext._
import sqlContext._
//创建jsonTable外部数据源表,并且指定其数数据源文件是people.json这个json文件,同时指定使用org.apache.spark.sql.json该类型的隐式转化类(这个后续文章会介绍)
scala> val jsonDDL = s"""
| |CREATE TEMPORARY TABLE jsonTable
| |USING org.apache.spark.sql.json
| |OPTIONS (
| | path 'file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json'
| |)""".stripMargin
jsonDDL: String =
"
CREATE TEMPORARY TABLE jsonTable
USING org.apache.spark.sql.json
OPTIONS (
path 'file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json'
)" scala> sqlContext.sql(jsonDDL).collect() //创建该外部数据源表jsonTable
14/12/21 16:44:27 INFO scheduler.DAGScheduler: Job 0 finished: reduce at JsonRDD.scala:57, took 0.204461 s
res0: Array[org.apache.spark.sql.Row] = Array()

我们来看下该schemaRDD:

scala> val jsonSchema = sqlContext.sql(jsonDDL)
jsonSchema: org.apache.spark.sql.SchemaRDD =
SchemaRDD[7] at RDD at SchemaRDD.scala:108
== Query Plan ==
== Physical Plan ==
ExecutedCommand (CreateTableUsing jsonTable, org.apache.spark.sql.json, Map(path -> file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json))

ExecutedCommand来取把数据用spark.sql.json的方式从path加载到jsonTable中。涉及到得类是CreateTableUsing,后续源码分析会讲到。

各阶段执行计划情况:

scala> sqlContext.sql("select * from jsonTable").queryExecution
res6: org.apache.spark.sql.SQLContext#QueryExecution =
== Parsed Logical Plan ==
'Project [*]
'UnresolvedRelation None, jsonTable, None == Analyzed Logical Plan ==
Project [age#0,name#1]
Relation[age#0,name#1] JSONRelation(file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json,1.0) == Optimized Logical Plan ==
Relation[age#0,name#1] JSONRelation(file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json,1.0) == Physical Plan ==
PhysicalRDD [age#0,name#1], MapPartitionsRDD[27] at map at JsonRDD.scala:47 Code Generation: false
== RDD ==

至此,创建加载外部数据源到Spark SQL已经完成。

我们可以使用任何我们希望的方式来查询:

3、SQL查询方式:

scala> sqlContext.sql("select * from jsonTable")
21 16:52:13 INFO spark.SparkContext: Created broadcast 6 from textFile at JSONRelation.scala:39
res2: org.apache.spark.sql.SchemaRDD =
SchemaRDD[20] at RDD at SchemaRDD.scala:108
== Query Plan ==
== Physical Plan ==
PhysicalRDD [age#2,name#3], MapPartitionsRDD[24] at map at JsonRDD.scala:47

执行查询:

scala> sqlContext.sql("select * from jsonTable").collect()
res1: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy], [19,Justin])

2.2 API方式

sqlContext.jsonFile

scala> val json = sqlContext.jsonFile("file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json")
scala> json.registerTempTable("jsonFile") scala> sql("select * from jsonFile").collect()
res2: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy], [19,Justin])

总的来说,Spark SQL 在努力的向各种数据源靠拢,希望让Spark SQL能和其它许多类型的数据源的集成。

Spark SQL提供的了一种创建加载外部数据源表的DDL语法:CREATE TEMPORARY TABLE USING OPTIONS

Spark SQL对外开放了一系列的扩展接口,能够通过实现这些接口,来实现对不同的数据源接入,如avro, csv, parquet,json, etc

三、Sources包核心

Spark SQL在Spark1.2中提供了External DataSource API,开发者可以根据接口来实现自己的外部数据源,如avro, csv, json, parquet等等。

在Spark SQL源代码的org/spark/sql/sources目录下,我们会看到关于External DataSource的相关代码。这里特别介绍几个:

1、DDLParser 

专门负责解析外部数据源SQL的SqlParser,解析create temporary table xxx using options (key 'value', key 'value') 创建加载外部数据源表的语句。

protected lazy val createTable: Parser[LogicalPlan] =
CREATE ~ TEMPORARY ~ TABLE ~> ident ~ (USING ~> className) ~ (OPTIONS ~> options) ^^ {
case tableName ~ provider ~ opts =>
CreateTableUsing(tableName, provider, opts)
}

2、CreateTableUsing

一个RunnableCommand,通过反射从外部数据源lib中实例化Relation,然后注册到为temp table。

private[sql] case class CreateTableUsing(
tableName: String,
provider: String, // org.apache.spark.sql.json
options: Map[String, String]) extends RunnableCommand { def run(sqlContext: SQLContext) = {
val loader = Utils.getContextOrSparkClassLoader
val clazz: Class[_] = try loader.loadClass(provider) catch { //do reflection
case cnf: java.lang.ClassNotFoundException =>
try loader.loadClass(provider + ".DefaultSource") catch {
case cnf: java.lang.ClassNotFoundException =>
sys.error(s"Failed to load class for data source: $provider")
}
}
val dataSource = clazz.newInstance().asInstanceOf[org.apache.spark.sql.sources.RelationProvider] //json包DefaultDataSource
val relation = dataSource.createRelation(sqlContext, new CaseInsensitiveMap(options))//创建JsonRelation sqlContext.baseRelationToSchemaRDD(relation).registerTempTable(tableName)//注册
Seq.empty
}
}  

    2、DataSourcesStrategy

在 Strategy 一文中,我已讲过Streategy的作用,用来Plan生成物理计划的。这里提供了一种专门为了解析外部数据源的策略。

最后会根据不同的BaseRelation生产不同的PhysicalRDD。不同的BaseRelation的scan策略下文会介绍。

private[sql] object DataSourceStrategy extends Strategy {
def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
case PhysicalOperation(projectList, filters, l @ LogicalRelation(t: CatalystScan)) =>
pruneFilterProjectRaw(
l,
projectList,
filters,
(a, f) => t.buildScan(a, f)) :: Nil
......
case l @ LogicalRelation(t: TableScan) =>
execution.PhysicalRDD(l.output, t.buildScan()) :: Nil case _ => Nil
}

3、interfaces.scala

该文件定义了一系列可扩展的外部数据源接口,对于想要接入的外部数据源,我们只需实现该接口即可。里面比较重要的trait RelationProvider 和 BaseRelation,下文会详细介绍。

4、filters.scala

该Filter定义了如何在加载外部数据源的时候,就进行过滤。注意哦,是加载外部数据源到Table里的时候,而不是Spark里进行filter。这个有点像hbase的coprocessor,查询过滤在Server上就做了,不在Client端做过滤。

5、LogicalRelation

封装了baseRelation,继承了catalyst的LeafNode,实现MultiInstanceRelation。

【转载】Spark SQL之External DataSource外部数据源

四、External DataSource注册流程

用spark sql下sql/json来做示例, 画了一张流程图,如下:
【转载】Spark SQL之External DataSource外部数据源
注册外部数据源的表的流程:
1、提供一个外部数据源文件,比如json文件。
2、提供一个实现了外部数据源所需要的interfaces的类库,比如sql下得json包,在1.2版本后改为了External Datasource实现。
3、引入SQLContext,使用DDL创建表,如create temporary table xxx using options (key 'value', key 'value') 
4、External Datasource的DDLParser将对该SQL进行Parse
5、Parse后封装成为一个CreateTableUsing类的对象。该类是一个RunnableCommand,其run方法会直接执行创建表语句。
6、该类会通过反射来创建一个org.apache.spark.sql.sources.RelationProvider,该trait定义要createRelation,如json,则创建JSONRelation,若avro,则创建AvroRelation。
7、得到external releation后,直接调用SQLContext的baseRelationToSchemaRDD转换为SchemaRDD
8、最后registerTempTable(tableName) 来注册为Table,可以用SQL来查询了。

五、External DataSource解析流程

先看图,图如下:
【转载】Spark SQL之External DataSource外部数据源
Spark SQL解析SQL流程如下:
1、Analyzer通过Rule解析,将UnresolvedRelation解析为JsonRelation。
2、通过Parse,Analyzer,Optimizer最后得到JSONRelation(file:///path/to/shengli.json,1.0)  
3、通过sources下得DataSourceStrategy将LogicalPlan映射到物理计划PhysicalRDD。
4、PhysicalRDD里包含了如何查询外部数据的规则,可以调用execute()方法来执行Spark查询。

六、External Datasource Interfaces

在第一节我已经介绍过,主要的interfaces,主要看一下BaseRelation和RelationProvider。
如果我们要实现一个外部数据源,比如avro数据源,支持spark sql操作avro file。那么久必须定义AvroRelation来继承BaseRelation。同时也要实现一个RelationProvider。
【转载】Spark SQL之External DataSource外部数据源
BaseRelation:
是外部数据源的抽象,里面存放了schema的映射,和如何scan数据的规则。
abstract class BaseRelation {
def sqlContext: SQLContext
def schema: StructType
}
abstract class PrunedFilteredScan extends BaseRelation {
def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row]
}
1、schema我们如果自定义Relation,必须重写schema,就是我们必须描述对于外部数据源的Schema。
2、buildScan我们定义如何查询外部数据源,提供了4种Scan的策略,对应4种BaseRelation。
我们支持4种BaseRelation,分为TableScan, PrunedScan,PrunedFilterScan,CatalystScan。
   1、TableScan
          默认的Scan策略。
   2、PrunedScan
          这里可以传入指定的列,requiredColumns,列裁剪,不需要的列不会从外部数据源加载。
   3、PrunedFilterScan
          在列裁剪的基础上,并且加入Filter机制,在加载数据也的时候就进行过滤,而不是在客户端请求返回时做Filter。
   4、CatalystScan
           Catalyst的支持传入expressions来进行Scan。支持列裁剪和Filter。
RelationProvider:
我们要实现这个,接受Parse后传入的参数,来生成对应的External Relation,就是一个反射生产外部数据源Relation的接口。
trait RelationProvider {
/**
* Returns a new base relation with the given parameters.
* Note: the parameters' keywords are case insensitive and this insensitivity is enforced
* by the Map that is passed to the function.
*/
def createRelation(sqlContext: SQLContext, parameters: Map[String, String]): BaseRelation
}

七、External Datasource定义示例

在Spark1.2之后,json和parquet也改为通过实现External API来进行外部数据源查询的。
下面以json的外部数据源定义为示例,说明是如何实现的:
【转载】Spark SQL之External DataSource外部数据源
1、JsonRelation
定义处理对于json文件的,schema和Scan策略,均基于JsonRDD,细节可以自行阅读JsonRDD。
private[sql] case class JSONRelation(fileName: String, samplingRatio: Double)(
@transient val sqlContext: SQLContext)
extends TableScan { private def baseRDD = sqlContext.sparkContext.textFile(fileName) //读取json file override val schema =
JsonRDD.inferSchema( // jsonRDD的inferSchema方法,能自动识别json的schema,和类型type。
baseRDD,
samplingRatio,
sqlContext.columnNameOfCorruptRecord) override def buildScan() =
JsonRDD.jsonStringToRow(baseRDD, schema, sqlContext.columnNameOfCorruptRecord) //这里还是JsonRDD,调用jsonStringToRow查询返回Row
}
2、DefaultSource
parameters中可以获取到options中传入的path等自定义参数。
这里接受传入的参数,来构造JsonRelation。
private[sql] class DefaultSource extends RelationProvider {
/** Returns a new base relation with the given parameters. */
override def createRelation(
sqlContext: SQLContext,
parameters: Map[String, String]): BaseRelation = {
val fileName = parameters.getOrElse("path", sys.error("Option 'path' not specified"))
val samplingRatio = parameters.get("samplingRatio").map(_.toDouble).getOrElse(1.0) JSONRelation(fileName, samplingRatio)(sqlContext)
}
}

  

八、总结
  External DataSource源码分析下来,可以总结为3部分。
  1、外部数据源的注册流程
  2、外部数据源Table查询的计划解析流程
  3、如何自定义一个外部数据源,重写BaseRelation定义外部数据源的schema和scan的规则。定义RelationProvider,如何生成外部数据源Relation。
  External Datasource此部分API还有可能在后续的build中改动,目前只是涉及到了查询,关于其它的操作还未涉及。
——EOF——

原创文章,转载请注明:

转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory

本文链接地址:http://blog.csdn.net/oopsoom/article/details/42064075

注:本文基于署名-非商业性使用-禁止演绎 2.5 *(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。

【转载】Spark SQL之External DataSource外部数据源