参考:http://blog.csdn.net/v_july_v/article/details/8203674
#!/user/bin/env python
# -*- coding:utf8 -*- __author__ = 'zky@msn.cn' import sys
import numpy
import heapq
import Queue class KDNode(object):
def __init__(self, name, feature):
self.name = name
self.ki = -1
self.is_leaf = False
self.feature = feature
self.kd_left = None
self.kd_right = None def traverse(self, seq, order='in'):
if order == 'in':
if self.kd_left:
self.kd_left.traverse(seq, order)
seq.append(self)
if self.kd_right:
self.kd_right.traverse(seq, order)
elif order == 'pre':
seq.append(self)
if self.kd_left:
self.kd_left.traverse(seq, order)
if self.kd_right:
self.kd_right.traverse(seq, order)
elif order == 'post':
if self.kd_left:
self.kd_left.traverse(seq, order)
if self.kd_right:
self.kd_right.traverse(seq, order)
seq.append(self)
else:
assert(False) class NodeDistance(object):
def __init__(self, kd_node, distance):
self.kd_node = kd_node
self.distance = distance # here i use a reversed result, because heapq can support only min heap
def __cmp__(self, other):
ret = other.distance - self.distance
if ret > 0:
return 1
elif ret < 0:
return -1
else:
return 0 def euclidean_distance(node1, node2):
assert len(node1.feature) == len(node2.feature)
sum = 0
for i in xrange(len(node1.feature)):
sum += numpy.square(node1.feature[i] - node2.feature[i])
return numpy.sqrt(sum) class KDTree(object):
# n is num of dimension
def __init__(self, nodes, n):
self.root = self.build_kdtree(nodes, n)
self.n = n def build_kdtree(self, nodes, n):
if len(nodes) == 0:
return None
max_var = 0
index = 0
for i in xrange(n):
features_n = map(lambda node : node.feature[i], nodes)
var = numpy.var(features_n)
if var > max_var:
max_var = var
index = i
sorted_nodes = sorted(nodes, key=lambda node: node.feature[index])
mid = len(sorted_nodes)/2
root = sorted_nodes[mid]
left_nodes = sorted_nodes[:mid]
right_nodes = sorted_nodes[mid+1:] root.ki = index
if len(left_nodes) == 0 and len(right_nodes) == 0:
root.is_leaf = True
root.kd_left = self.build_kdtree(left_nodes, n)
root.kd_right = self.build_kdtree(right_nodes, n)
return root def traverse_kdtree(self, order='in'):
seq = []
self.root.traverse(seq, order)
print map(lambda n : n.name, seq) # return a list of NodeDistance sorded by distance
def kdtree_bbf_knn(self, target, k):
if len(target.feature) != self.n:
return None
knn = []
priority_queue = Queue.LifoQueue()
priority_queue.put(self.root)
while not priority_queue.empty():
expl = priority_queue.get()
while expl:
ki = expl.ki
kv = expl.feature[ki] if expl.name != target.name: # ignore target node itself
# save a maybe result
distance = euclidean_distance(expl, target)
nd = NodeDistance(expl, distance)
assert len(knn) <= k
if len(knn) == k:
if distance < knn[0].distance:
heapq.heapreplace(knn, nd)
else: # len(knn) < k
heapq.heappush(knn, nd) unexpl = None
# find next expl
if target.feature[ki] <= kv: # left
unexpl = expl.kd_right
expl = expl.kd_left
else:
unexpl = expl.kd_left
expl = expl.kd_right # ignore nodes over a long distance bin
if unexpl:
# save a maybe next expl
if len(knn) < k:
priority_queue.put(unexpl)
elif (len(knn) == k) and (abs(kv - target.feature[ki]) < knn[0].distance):
priority_queue.put(unexpl)
ret = []
for i in xrange(len(knn)):
node = heapq.heappop(knn)
ret.insert(0, node)
return ret if __name__ == '__main__':
f1 = [7, 2]
f2 = [5, 4]
f3 = [9, 6]
f4 = [2, 3]
f5 = [4, 7]
f6 = [8, 1]
fx = [2, 4.5]
n1 = KDNode('f1', f1)
n2 = KDNode('f2', f2)
n3 = KDNode('f3', f3)
n4 = KDNode('f4', f4)
n5 = KDNode('f5', f5)
n6 = KDNode('f6', f6)
nx = KDNode('fx', fx) n1_distance = NodeDistance(n4, 1.5)
n2_distance = NodeDistance(n5, 3.2)
n3_distance = NodeDistance(n2, 3.04)
assert n1_distance > n2_distance
assert n1_distance > n3_distance
assert n2_distance < n3_distance tree = KDTree([n1, n2, n3, n4, n5, n6, nx], 2)
tree.traverse_kdtree('in')
knn = tree.kdtree_bbf_knn(nx, 3)
print map(lambda n : (n.kd_node.name, n.distance), knn)