堆的基础题目学习(EPI)

时间:2023-01-10 12:31:58

堆的应用范围也比较广泛,经常游走在各种面试题目之前,不论算法设计的题目还是海量数据处理的题目,经常能看到这种数据结构的身影。堆其实就是一个完全二叉树的结构,经常利用数组来实现。包含最大堆和最小堆两种。最大堆的性质:针对每个根节点,其节点值大于其后继节点。最小堆的性质:针对每个根节点,其节点值小于后继节点。

算法设计中堆数据结构一般直接利用STL中实现好的数据结构。其中针对堆数据结构的操作:插入和删除时间复杂度可记为O(lgn),返回最大值/最小值时间复杂度记为O(1)。另外,这里的堆和内存分配中的堆完全没有任何关系,内存分配中的堆一般是一个可用内存空间连接起来的链表,而这个是一种树形的数据结构。

STL堆的使用:

#include <queue>
using namespace std;
//其中priority_queue默认使用的less<T>的比较操作,为最大堆
//如果希望使用最小堆,需要手动配置compare,比如使用greater<T>或者定义一个T类型的比较函数
//返回>为true定义的为最小堆,返回<为true定义的为最大堆
//内置类型的简单声明
priority_queue<int,vector<int>,greater<int> > minqueue;
priority_queue<int,vector<int>,less<int> > maxqueue;
//自定义类型自定义仿函数模板或者重载operator <即可。
#include <iostream>
#include <functional>
#include <queue>
using namespace std;
class person {
public:
string firstname;
string secondname;
person(const string &f,const string &s):firstname(f),secondname(s) {
;
}
friend ostream & operator <<(ostream &os,const person &p1);
};
ostream & operator <<(ostream &os,const person &p1) {
os<<p1.firstname<<" "<<p1.secondname<<endl;
return os;
}
template<class T>
class compareMin {
public:
bool operator()(const T & p1,const T & p2) {
if(p1.firstname == p2.firstname) {
return p1.secondname > p2.secondname;
}
return p1.firstname > p2.firstname;
}
}; template<class T>
class compareMax {
public:
bool operator()(const T & p1,const T & p2) {
if(p1.firstname == p2.firstname) {
return p1.secondname < p2.secondname;
}
return p1.firstname < p2.secondname;
}
};
int main(void) {
priority_queue<int,vector<int>,greater<int> > minqueue;
priority_queue<int,vector<int>,less<int> > maxqueue;
priority_queue<person,vector<person>,compareMin<person> > minperqueue;
priority_queue<person,vector<person>,compareMax<person> > maxperqueue;
minperqueue.push(person("aaa","bbb"));
minperqueue.push(person("ccc","ddd"));
minperqueue.push(person("eee","fff"));
maxperqueue.push(person("aaa","bbb"));
maxperqueue.push(person("ccc","ddd"));
maxperqueue.push(person("eee","fff"));
cout<<minperqueue.top();
cout<<maxperqueue.top();
}  

堆的经典应用top k计算,last k计算,中位数的维护;堆的另外的应用场景为多个元素比较操作。

1.在RAM比较受限制的情况下,如何归并k个已经有序的文件。

归并k个有序文件可以利用两两归并的方法,但是这样读写IO比较多,第一次合并的文件读写IO达到了k-1次。效率非常低。

另外一种思路就是k路归并的方法,k路归并的场景是一次需要比较k个数字,也即从k个数字中取出最小,这种使用场景非常吻合最小堆的性质。所以此题目考虑使用最小堆进行k路归并,每次将k个有序文件读取当前文本记录,得到当前最小文本记录,将最小文本记录文件的读取指针后移,这样文件记录IO每个均读写一次,效率比两两归并提高不少。

2.设计一个算法,排序一个k-increasing-decreasing的数组。k-increasing-decreasing数组的定义是,元素大小成波浪状,首先increasing增加然后decreasing,依次交替,且increasing的元素个数+decreasing的个数 = k。举一个例子如下图:

堆的基础题目学习(EPI)

看到这个题目之后由于是英文,把题目的题意理解错了,我以为是要把一个无序的数组排序成k-increasing-decreasing数组,如果题意是这个样子会有很多种答案。

看完答案之后才发现题意没有正确理解。如果为排序k-increasing-decreasing数组,把数组均打断为increasing sorting数组,decreasing的需要逆序一下。因为题目中的增,减区间比较分明,容易处理。然后利用k路归并的方法归并。

3.利用堆的API实现栈和队列的功能。

初遇到这个题目的时候一时也没有思路,后来想回想了一下堆的功能,push,pop,extract-min或者extract-max的功能,所以需要把extract-min或extract-max的功能与先进后出和先进先出的功能对应起来。

后来想到添加元素的时候同时添加一个自增的元素即可,根据自增的元素建立最大堆能够获得栈的接口,根据自增的元素建立最小堆能够获得队列的接口。

4.给定一个点的坐标,然后有一个超大文件为另外一些点的坐标。内存受限的情况下如何找出文件中距离给定坐标距离最近的k个点。

类似top k的算法,创建一个长度为k的最大堆,每次遇到比堆顶距离给定点距离近的点,删除堆顶的点,向堆中压入该坐标点。文件扫描一遍之后及求出了距离最近的k个点。

5.一段整数数据流,找出第k-th大的元素。

利用最小堆,如果当前元素大于根节点元素,则删除根节点元素,加入该元素。最后根节点保存的为第k-th大的元素。

6.给定一个近似有序的数组,每个乱序的元素距离它原位置不超过k个单位,设计一个排序该数组的算法。

利用最小堆,空间设置为O(k),每次拿出最小的元素输出,压入元素。因为乱序元素距离原位置不超过k个单位,所以这样就能够保证输出的最小的均为有序的。

7.设计一个能够在O(n)时间复杂度内返回距离数组中位数元素最近的k个元素。

首先利用快速选择能够在O(n)的时间复杂度内得到中位数。

如果利用堆来实现最近的k个元素为O(nlgk),

另外一种方法,O(n)的时间复杂度内快速选择得到中位数,然后A[i]-中位数得到的新数组中利用快速选择得到第k小的数字,两遍扫描。

然后根据得到的第k小的数字再次扫描即可得到结果。

8.实施计算一个整型数据流的中位数。

利用两个堆来维护中位数,之前的一篇日志详细介绍了一下:求中位数总结

9.假定一个实数集的表示形式为a+b√2,其中a,b均为大于等于0的整数,求出这个实数集中第k小的元素。比如0+0√2为最小的元素。

这个题目的思路与之前一个面试中挂掉的题目极为的神似。

那个题目是两个有序的数组,A和B,求第k小的A[i]+B[j]。举例来说A[0]+B[0]为最小元素。

还有一个类似的题目为由质因数3,5,7组成的第k小的数字。举例来说3,5,7,9...等等。

其中的思路均是利用最小堆来维护,从堆中获取一个元素之后,向最小堆中加入多个元素比较。需要控制加入顺序或者利用hash表过滤重复。

10.设计一个算法,判断一个最大堆中第k-th大的元素与给定元素x的关系(大于,等于,小于指定元素)。

思路保持两个全局变量,一个记录大于k的元素个数,一个记录等于k的元素的个数,然后递归的计算两个变量。任意一个变量大于k则结束递归即可。

然后根据两个变量来计算第k-th大的元素与给定元素x的关系。

堆的基础题目学习(EPI)的更多相关文章

  1. 数组和字符串的基础题目学习(EPI)

    学习的速度有些慢,脑袋转动的频率有些不是很高.不过今天的效率我觉得还是可以,应该不能称效率吧,就是整个感觉不错,感觉自己补充了很多的知识.其实G家和F家败了之后不知道看看算法题对接下来的找工作帮助是否 ...

  2. 二叉树的基础题目学习(EPI)

    1.判断是个二叉树是不是平衡二叉树. 二叉树的定义都是利用递归的方法,所以二叉树有着天然的递归属性.所以一般情况下,递归解决二叉树问题中,递归解法比较简洁.平衡二叉树的定义是左子树和右子树均是平衡二叉 ...

  3. 链表的基础题目学习(EPI)

    链表的题目总体来说细节比较多,因为链表的题目在操作链表的过程中本身有些复杂,所以如果链表作为编程题出现的时候,多数情况下题目本身的思路可能不是很复杂,不要把题目往复杂的方向去思考就好了~这里的链表只是 ...

  4. java基础题目总结

    有些基础题目由于工作中用的比较少但却又是不可少的,这样回答起来就会反应慢,不确定,不准确,特此开了文章记录遇到的不确定或者回答比较拗口的问题. 1.servlet是单例的吗,是安全的吗,是多线程吗 s ...

  5. iOS 面试基础题目

    转载: iOS 面试基础题目 题目来自博客:面试百度的记录,有些问题我能回答一下,不能回答的或有更好的回答我放个相关链接供参考. 1面 Objective C runtime library:Obje ...

  6. 20145308 《网络对抗》Web安全基础实践 学习总结

    20145308 <网络对抗> Web安全基础实践 学习总结 实验内容 本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 基础问题回答 (1)SQL注入攻击原理, ...

  7. 零基础如何学习java更有效呢?

    零基础学java,不知道该如何入手?也不知道学习的方向,很多人会问零基础怎么样学习,有没有什么入门的书籍推荐:只要方法正确,零基础学好java也是有机会的哦. 一.理解Java思想 Java是一门面向 ...

  8. Swift基础语法学习总结&lpar;转&rpar;

    Swift基础语法学习总结 1.基础  1.1) swift还是使用// 和/* */ 来注释,并且/* */允许多行注释. 1.2) swift使用print和println打印,它的传参是一个泛型 ...

  9. Java基础知识学习(九)

    GUI开发 先前用Java编写GUI程序,是使用抽象窗口工具包AWT(Abstract Window Toolkit).现在多用Swing.Swing可以看作是AWT的改良版,而不是代替AWT,是对A ...

随机推荐

  1. 面向组合子设计Coder

    面向组合子 面向组合子(Combanitor-Oriented),是最近帮我打开新世界大门的一种pattern.缘起haskell,又见monad与ParseC,终于ajoo前辈的几篇文章. 自去年9 ...

  2. js第一天

    学习js的地址 http://www.w3school.com.cn/js/index.asp JS是一种轻量级的编程语言,插入html页面后可以由任何浏览器去执行,可用于 HTML 和 web,更可 ...

  3. ELk 几篇好的文章

    https://nxlog.co/docs/elasticsearch-kibana/using-nxlog-with-elasticsearch-and-kibana.html http://www ...

  4. Java数据库增删改查

    数据库为MySQL数据库,Oracle数据库类似: create database db_test;--创建数据库 ';--创建用户 grant all privileges on db_test.* ...

  5. 使用Userlock监控用户访问 增强学校网络安全

    随着网络技术的不断进步,一方面,拥有广泛教学资源的各大大中院校纷纷升级校园网络技术,保护学校的网络安全.另一方面,网络安全面临的威胁也层出不穷.面对来自网络内外的安全威胁,负责中小学.大学院校网络安全 ...

  6. android 安全未来怎么走

  7. POI tools 参数化生成excel表格

    package com.eccom.neteagle.server.confsave.service.impl; import java.io.File; import java.io.FileNot ...

  8. 【jQuery Demo】图片切换效果整理

    图片的切换效果有很多,比较常见的有水平滚动.垂直滚动.淡入淡出等.我们接下来一一实现这些效果. 1.水平滚动 1) 我们先来实现HTML页面,代码很简单: <div id="conta ...

  9. python打开文件的N种姿势

    # python打开文件的N种姿势 print('[1]使用open()函数+简单for循环') f1 = open('python.txt') for line in f1: print(line. ...

  10. HTML day48

    前端知识之HTML内容   HTML介绍 Web服务本质 import socket#引入套接字模块 sk = socket.socket()#实例化一个套接字对象 sk.bind(("12 ...