SciPy - 科学计算库(上)

时间:2023-01-09 22:56:16

SciPy - 科学计算库(上)

一、实验说明

SciPy 库建立在 Numpy 库之上,提供了大量科学算法,主要包括这些主题:

在本实验中我们将了解其中一些包的使用方法。

(ps:因本节只讲工具的用法,对这些科学主题不展开讨论,所以根据自己所学的知识挑选食用就好了,强迫症不要纠结哈~)

1. 环境登录

无需密码自动登录,系统用户名shiyanlou

2. 环境介绍

本课程实验环境使用Spyder。首先打开terminal,然后输入以下命令:

spyder -w scientific-python-lectures


关于Spyder的使用可参考文档:https://pythonhosted.org/spyder/

本实验基本在控制台下进行,可关闭其余窗口,只保留控制台。如需要调出窗口,可以通过 view->windows and toolbar 调出。比如希望在py文件中编写代码,可以 view->windows and toolbar->Editor 调出编辑器窗口。

SciPy - 科学计算库(上)

二、实验内容

让我们先导入必要的库

from numpy import *
from scipy import *


特定函数

在计算科学问题时,常常会用到很多特定的函数,SciPy 提供了一个非常广泛的特定函数集合。函数列表可参考:http://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special

为了演示特定函数的一般用法我们拿贝塞尔函数举例:

#
# The scipy.special module includes a large number of Bessel-functions
# Here we will use the functions jn and yn, which are the Bessel functions
# of the first and second kind and real-valued order. We also include the
# function jn_zeros and yn_zeros that gives the zeroes of the functions jn
# and yn.
#
%matplotlib qt
from scipy.special import jn, yn, jn_zeros, yn_zeros
import matplotlib.pyplot as plt

n = 0 # order
x = 0.0

# Bessel function of first kind
print "J_%d(%f) = %f" % (n, x, jn(n, x))

x = 1.0
# Bessel function of second kind
print "Y_%d(%f) = %f" % (n, x, yn(n, x))

=> J_0(0.000000) = 1.000000
Y_0(1.000000) = 0.088257



x = linspace(0, 10, 100)

fig, ax = plt.subplots()
for n in range(4):
ax.plot(x, jn(n, x), label=r"$J_%d(x)$" % n)
ax.legend();

fig



SciPy - 科学计算库(上)

# zeros of Bessel functions
n = 0 # order
m = 4 # number of roots to compute
jn_zeros(n, m)

=> array([ 2.40482556, 5.52007811, 8.65372791, 11.79153444])




积分

数值积分: 求积

SciPy - 科学计算库(上) 被称作 数值求积,Scipy提供了一些列不同类型的求积函数,像是 quaddblquad 还有 tplquad 分别对应单积分,双重积分,三重积分。

from scipy.integrate import quad, dblquad, tplquad


quad 函数有许多参数选项来调整该函数的行为(详情见help(quad))。

一般用法如下:

# define a simple function for the integrand
def f(x):
return x


x_lower = 0 # the lower limit of x
x_upper = 1 # the upper limit of x

val, abserr = quad(f, x_lower, x_upper)

print "integral value =", val, ", absolute error =", abserr

=> integral value = 0.5 , absolute error = 5.55111512313e-15



如果我们需要传递额外的参数,可以使用 args 关键字:

def integrand(x, n):
"""
Bessel function of first kind and order n.
"""
return jn(n, x)


x_lower = 0 # the lower limit of x
x_upper = 10 # the upper limit of x

val, abserr = quad(integrand, x_lower, x_upper, args=(3,))

print val, abserr

=> 0.736675137081 9.38925687719e-13



对于简单的函数我们可以直接使用匿名函数:

val, abserr = quad(lambda x: exp(-x ** 2), -Inf, Inf)

print "numerical =", val, abserr

analytical = sqrt(pi)
print "analytical =", analytical

=> numerical = 1.77245385091 1.42026367809e-08
analytical = 1.77245385091


如例子所示,'Inf' 与 '-Inf' 可以表示数值极限。

高阶积分用法类似:

def integrand(x, y):
return exp(-x**2-y**2)

x_lower = 0
x_upper = 10
y_lower = 0
y_upper = 10

val, abserr = dblquad(integrand, x_lower, x_upper, lambda x : y_lower, lambda x: y_upper)

print val, abserr

=> 0.785398163397 1.63822994214e-13



注意到我们为y积分的边界传参的方式,这样写是因为y可能是关于x的函数。

常微分方程 (ODEs)

SciPy 提供了两种方式来求解常微分方程:基于函数 odeint 的API与基于 ode 类的面相对象的API。通常 odeint 更好上手一些,而 ode 类更灵活一些。

这里我们将使用 odeint 函数,首先让我们载入它:

from scipy.integrate import odeint, ode



常微分方程组的标准形式如下:

SciPy - 科学计算库(上)

SciPy - 科学计算库(上)

为了求解常微分方程我们需要知道方程 SciPy - 科学计算库(上) 与初始条件SciPy - 科学计算库(上) 注意到高阶常微分方程常常写成引入新的变量作为中间导数的形式。 一旦我们定义了函数 f 与数组y_0 我们可以使用 odeint 函数:

y_t = odeint(f, y_0, t)


我们将会在下面的例子中看到 Python 代码是如何实现 f 与 y_0 。

示例: 双摆

让我们思考一个物理学上的例子:双摆

关于双摆,参考:http://en.wikipedia.org/wiki/Double_pendulum

Image(url='http://upload.wikimedia.org/wikipedia/commons/c/c9/Double-compound-pendulum-dimensioned.svg')



SciPy - 科学计算库(上)

维基上已给出双摆的运动方程:

SciPy - 科学计算库(上)

为了使 Python 代码更容易实现,让我们介绍新的变量名与向量表示法: SciPy - 科学计算库(上)

SciPy - 科学计算库(上)

g = 9.82
L = 0.5
m = 0.1

def dx(x, t):
"""
The right-hand side of the pendulum ODE
"""
x1, x2, x3, x4 = x[0], x[1], x[2], x[3]

dx1 = 6.0/(m*L**2) * (2 * x3 - 3 * cos(x1-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
dx2 = 6.0/(m*L**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
dx3 = -0.5 * m * L**2 * ( dx1 * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))
dx4 = -0.5 * m * L**2 * (-dx1 * dx2 * sin(x1-x2) + (g/L) * sin(x2))

return [dx1, dx2, dx3, dx4]


# choose an initial state
x0 = [pi/4, pi/2, 0, 0]


# time coodinate to solve the ODE for: from 0 to 10 seconds
t = linspace(0, 10, 250)


# solve the ODE problem
x = odeint(dx, x0, t)


# plot the angles as a function of time

fig, axes = plt.subplots(1,2, figsize=(12,4))
axes[0].plot(t, x[:, 0], 'r', label="theta1")
axes[0].plot(t, x[:, 1], 'b', label="theta2")


x1 = + L * sin(x[:, 0])
y1 = - L * cos(x[:, 0])

x2 = x1 + L * sin(x[:, 1])
y2 = y1 - L * cos(x[:, 1])

axes[1].plot(x1, y1, 'r', label="pendulum1")
axes[1].plot(x2, y2, 'b', label="pendulum2")
axes[1].set_ylim([-1, 0])
axes[1].set_xlim([1, -1]);

fig


SciPy - 科学计算库(上)

我们将在第四节课看到如何做出更好的演示动画。

from IPython.display import clear_output
import time


fig, ax = plt.subplots(figsize=(4,4))

for t_idx, tt in enumerate(t[:200]):

x1 = + L * sin(x[t_idx, 0])
y1 = - L * cos(x[t_idx, 0])

x2 = x1 + L * sin(x[t_idx, 1])
y2 = y1 - L * cos(x[t_idx, 1])

ax.cla()
ax.plot([0, x1], [0, y1], 'r.-')
ax.plot([x1, x2], [y1, y2], 'b.-')
ax.set_ylim([-1.5, 0.5])
ax.set_xlim([1, -1])

display(fig)
clear_output()

time.sleep(0.1)

fig



SciPy - 科学计算库(上)

示例:阻尼谐震子

常微分方程问题在计算物理学中非常重要,所以我们接下来要看另一个例子:阻尼谐震子。wiki地址:http://en.wikipedia.org/wiki/Damping

阻尼震子的运动公式:

SciPy - 科学计算库(上)

其中 SciPy - 科学计算库(上) 是震子的位置, SciPy - 科学计算库(上) 是频率, SciPy - 科学计算库(上) 是阻尼系数. 为了写二阶标准行事的 ODE 我们引入变量:

SciPy - 科学计算库(上):

SciPy - 科学计算库(上)

SciPy - 科学计算库(上)

在这个例子的实现中,我们会加上额外的参数到 RHS 方程中:

def dy(y, t, zeta, w0):
"""
The right-hand side of the damped oscillator ODE
"""
x, p = y[0], y[1]

dx = p
dp = -2 * zeta * w0 * p - w0**2 * x

return [dx, dp]


# initial state:
y0 = [1.0, 0.0]


# time coodinate to solve the ODE for
t = linspace(0, 10, 1000)
w0 = 2*pi*1.0


# solve the ODE problem for three different values of the damping ratio

y1 = odeint(dy, y0, t, args=(0.0, w0)) # undamped
y2 = odeint(dy, y0, t, args=(0.2, w0)) # under damped
y3 = odeint(dy, y0, t, args=(1.0, w0)) # critial damping
y4 = odeint(dy, y0, t, args=(5.0, w0)) # over damped


fig, ax = plt.subplots()
ax.plot(t, y1[:,0], 'k', label="undamped", linewidth=0.25)
ax.plot(t, y2[:,0], 'r', label="under damped")
ax.plot(t, y3[:,0], 'b', label=r"critical damping")
ax.plot(t, y4[:,0], 'g', label="over damped")
ax.legend();

fig



SciPy - 科学计算库(上)

傅立叶变换

傅立叶变换是计算物理学所用到的通用工具之一。Scipy 提供了使用 NetLib FFTPACK 库的接口,它是用FORTRAN写的。Scipy 还另外提供了很多便捷的函数。不过大致上接口都与 NetLib 的接口差不多。

让我们加载它:

from scipy.fftpack import *


下面演示快速傅立叶变换,例子使用上节阻尼谐震子的例子:

N = len(t)
dt = t[1]-t[0]

# calculate the fast fourier transform
# y2 is the solution to the under-damped oscillator from the previous section
F = fft(y2[:,0])

# calculate the frequencies for the components in F
w = fftfreq(N, dt)


fig, ax = plt.subplots(figsize=(9,3))
ax.plot(w, abs(F));

fig


SciPy - 科学计算库(上)

既然信号是实数,同时频谱是对称的。那么我们只需要画出正频率所对应部分的图:

indices = where(w > 0) # select only indices for elements that corresponds to positive frequencies
w_pos = w[indices]
F_pos = F[indices]


fig, ax = subplots(figsize=(9,3))
ax.plot(w_pos, abs(F_pos))
ax.set_xlim(0, 5);

fig



SciPy - 科学计算库(上)

正如预期的那样,我们可以看到频谱的峰值在1处。1就是我们在上节例子中所选的频率。