一:用迭代法求 x=√a。求平方根的迭代公式为:X(n+1)=(Xn+a/Xn) /2。
#define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <math.h> int main() { double x1, x2; float a; scanf("%f", &a); x2 = 1.0; do { x1 = x2; x2 = (x1 + a / x1) / 2; } while (fabs(x1-x2)>pow(10,-5)); printf("value:%lf", x2); system("pause"); return 0; }
二:用牛顿迭代法求方程在1.5附近的根(2x3-4x2+3x-6=0)
例:方程求根牛顿迭代法 求方程 f(x)=x3+x2-3x-3=0在1.5附近的根
f(x)=x^3+x^2-3x-3 f'(x)=3x^2+2x-3 x(n+1)=xn-f(xn)/f'(xn) 令x1=1.5 x2=1.777778 x3=1.733361 x4=1.732052 x5=1.732051 x6=1.732051 如果精确到0.000001,则x=1.732051 准确值=根号3
重要公式
#include <stdio.h> #include <stdlib.h> #include <math.h> int main() { double x1=0, x2; double fx1, fx2; x2 = 1.5; while (fabs(x1 - x2)>=1e-6) { x1 = x2; fx1 = 2 * x1*x1*x1 - 4 * x1*x1 + 3 * x1 - 6; //f(xn) fx2 = 6 * x1*x1 - 8 * x1 + 3; //f(xn)' x2 = x1 - fx1 / fx2; } printf("value:%lf", x2); system("pause"); return 0; }
三:二分法求方程的根
给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 1 确定区间[a,b],验证f(a)·f(b)<0(这是前提,选取的区间必须满足这个条件),给定精确度ξ. 2 求区间(a,b)的中点c. 3 计算f(c). (1) 若f(c)=0,则c就是函数的零点; (2) 若f(a)·f(c)<0,则令b=c; (3) 若f(c)·f(b)<0,则令a=c. (4) 判断是否达到精确度ξ:即若|a-b|<ξ,则得到零点近似值a(或b),否则重复2-4.
#include <stdio.h> #include <stdlib.h> #include <math.h> double fx(double x) { return 2 * x*x*x - 4 * x*x + 3 * x - 6; } int main() { double x1 , x2; double fx1, fx2; double e = 1e-6; do { printf("enter (x1,x2):\n"); scanf("%lf", &x1); scanf("%lf", &x2); if (x1>x2) { double temp = x1; x1 = x2; x2 = temp; } fx1 = fx(x1); fx2 = fx(x2); } while (fx1*fx2>0); if (fabs(fx1) < e) printf("solution1:%lf\n", x1); else if (fabs(fx2) < e) printf("solution2:%lf\n", x2); else { while (fabs(x1 - x2) >= e) { double mid = (x1 + x2) / 2; if (fx(mid)*fx2 < 0) x1 = mid; else x2 = mid; } printf("solution3:%lf", x2); } system("pause"); return 0; }