【BZOJ】【3171】【TJOI2013】循环格

时间:2024-01-11 11:39:02

网络流/费用流


  最后能走回出发点……说明全部是环= =

  而二分图上的环说明什么呢……完备匹配

  对于每个点,它都有四个可能的匹配点,且已知它已经(伪)匹配的一个点,那么我们于已知每条(伪)匹配边,我们连(i,j)->(x,y)' 流量为1,费用为0,表示不用修改,然后对(x,y)'我们向另外三个可能的匹配点连边,流量为1,费用为1,表示修改这个点的匹配对象的代价。

  然后对于每个点连S->(i,j) 流量为1,费用为0,(i,j)'->T,流量为1,费用为0。保证每个点有且仅有一个匹配点

 /**************************************************************
Problem: 3171
User: Tunix
Language: C++
Result: Accepted
Time:28 ms
Memory:5968 kb
****************************************************************/ //BZOJ 3171
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
#define CC(a,b) memset(a,b,sizeof(a))
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') sign=-; ch=getchar();}
while(isdigit(ch)) {v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,M=,INF=~0u>>;
const double eps=1e-;
/*******************template********************/
int n,m,ans,flow,tot;
inline int pack(int i,int j){
if (i==) i=n;
if (i==n+) i=;
if (j==) j=m;
if (j==m+) j=;
return (i-)*m+j;
}
struct edge{int from,to,v,c;};
struct Net{
edge E[M];
int head[N],next[M],cnt;
void ins(int x,int y,int z,int c){
E[++cnt]=(edge){x,y,z,c};
next[cnt]=head[x]; head[x]=cnt;
}
void add(int x,int y,int z,int c){
ins(x,y,z,c); ins(y,x,,-c);
}
int from[N],Q[M],d[N],S,T;
bool inq[N];
bool spfa(){
int l=,r=-;
F(i,,T) d[i]=INF;
Q[++r]=S; d[S]=; inq[S]=;
while(l<=r){
int x=Q[l++]; inq[x]=;
for(int i=head[x];i;i=next[i])
if(E[i].v && d[x]+E[i].c<d[E[i].to]){
d[E[i].to]=d[x]+E[i].c;
from[E[i].to]=i;
if(!inq[E[i].to]){
Q[++r]=E[i].to;
inq[E[i].to]=;
}
}
}
return d[T]!=INF;
}
void mcf(){
int x=INF;
for(int i=from[T];i;i=from[E[i].from])
x=min(x,E[i].v);
for(int i=from[T];i;i=from[E[i].from]){
E[i].v-=x;
E[i^].v+=x;
}
ans+=x*d[T];
}
void init(){
n=getint(); m=getint(); cnt=;
S=; T=*n*m+; tot=n*m;
char s[];
F(i,,n){
scanf("%s",s);
F(j,,m){
add(S,pack(i,j),,);
if (s[j-]=='U'){
add(pack(i,j),tot+pack(i-,j),,);
add(tot+pack(i-,j),tot+pack(i+,j),,);
add(tot+pack(i-,j),tot+pack(i,j-),,);
add(tot+pack(i-,j),tot+pack(i,j+),,);
}
if (s[j-]=='L'){
add(pack(i,j),tot+pack(i,j-),,);
add(tot+pack(i,j-),tot+pack(i,j+),,);
add(tot+pack(i,j-),tot+pack(i-,j),,);
add(tot+pack(i,j-),tot+pack(i+,j),,);
}
if (s[j-]=='D'){
add(pack(i,j),tot+pack(i+,j),,);
add(tot+pack(i+,j),tot+pack(i-,j),,);
add(tot+pack(i+,j),tot+pack(i,j+),,);
add(tot+pack(i+,j),tot+pack(i,j-),,);
}
if (s[j-]=='R'){
add(pack(i,j),tot+pack(i,j+),,);
add(tot+pack(i,j+),tot+pack(i,j-),,);
add(tot+pack(i,j+),tot+pack(i+,j),,);
add(tot+pack(i,j+),tot+pack(i-,j),,);
}
add(tot+pack(i,j),T,,);
}
}
while(spfa()) mcf();
printf("%d\n",ans);
}
}G1;
int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
#endif
G1.init();
return ;
}

3171: [Tjoi2013]循环格

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 600  Solved: 359
[Submit][Status][Discuss]

Description

一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子。每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0)。给定一个起始位置(r,c)

,你可以沿着箭头防线在格子间行走。即如果(r,c)是一个左箭头,那么走到(r,c-1);如果是右箭头那么走到(r,c+1);如果是上箭头那么走到
(r-1,c);如果是下箭头那么走到(r+1,c);每一行和每一列都是循环的,即如果走出边界,你会出现在另一侧。
一个完美的循环格是这样定义的:对于任意一个起始位置,你都可以i沿着箭头最终回到起始位置。如果一个循环格不满足完美,你可以随意修改任意一个元素的箭头直到完美。给定一个循环格,你需要计算最少需要修改多少个元素使其完美。

Input

第一行两个整数R,C。表示行和列,接下来R行,每行C个字符LRUD,表示左右上下。

Output

一个整数,表示最少需要修改多少个元素使得给定的循环格完美

Sample Input

3 4
RRRD
URLL
LRRR

Sample Output

2

HINT

1<=R,L<=15

Source

[Submit][Status][Discuss]