在图像采集和生成中会不可避免的引入噪声,图像噪声是指存在于图像数据中的不必要的或多余的干扰信息,这对我们对图像信息的提取造成干扰,所以要进行去噪声处理,常见的去除噪声的方法有均值滤波、中值滤波、高斯滤波等,这一篇要实现的是均值滤波。
均值滤波的方法是将图像数据生成3x3的矩阵或是5x5等其他模板,然后对这个矩阵模板进行处理。在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围 8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。说白了就是对这九个数求个平均值代替中间的那个数。在FPGA中我们为了简便运算只将目标像素周围八个点求和然后除以8,取代目标像素点。
MATLAB对数字图像处理有各种函数支持,各种滤波和边缘检测都可以之间用几行函数实现,但是博主本着学习算法的基本原理,所以不用函数自己根据滤波原理写代码。本设计是在上一篇RGB转Gray后的灰度图进行滤波处理。
添加噪声污染函数
g = imnoise(I,type,parameters)
g=imnoise(f,'salt & pepper',d)用椒盐噪声污染图像f,其中d是噪声密度(即包括噪声值的图像区域的百分比)。因此,大约有d*numel(f)个像素受到影响。默认的噪声密度为0.05。
本设计只用到了对椒盐噪声的处理,所以仅记录这一种噪声的添加。
均值滤波代码
%Mean Filter
clc;
clear all;
close all; RGB_data = imread('lena.jpg'); R_data = RGB_data(:,:,);
G_data = RGB_data(:,:,);
B_data = RGB_data(:,:,); %imshow(RGB_data); [ROW,COL, DIM] = size(RGB_data); Y_data = zeros(ROW,COL);
Cb_data = zeros(ROW,COL);
Cr_data = zeros(ROW,COL);
Gray_data = RGB_data; for r = :ROW
for c = :COL
Y_data(r, c) = 0.299*R_data(r, c) + 0.587*G_data(r, c) + 0.114*B_data(r, c);
Cb_data(r, c) = -0.172*R_data(r, c) - 0.339*G_data(r, c) + 0.511*B_data(r, c) + ;
Cr_data(r, c) = 0.511*R_data(r, c) - 0.428*G_data(r, c) - 0.083*B_data(r, c) + ;
end
end Gray_data(:,:,)=Y_data;
Gray_data(:,:,)=Y_data;
Gray_data(:,:,)=Y_data; figure;
imshow(Gray_data); %Gray Mean Filter Gray_data = im2double(Gray_data);
imgn = imnoise(Gray_data,'salt & pepper',0.05); %imgn = Gray_data; figure;
imshow(imgn); for r = ::ROW-
for c = ::COL-
Mean_Img(r,c) = (imgn(r-, c-) + imgn(r-, c) + imgn(r-, c+) + imgn(r, c-) + imgn(r, c) + imgn(r, c+) + imgn(r+, c-) + imgn(r+, c) + imgn(r+, c+)) / ;
end
end figure;
imshow(Mean_Img);
处理前后图片结果比较
Gray lena
Mean_Filter lena
从处理前后的图片中可以看到处理过后的图片变模糊了一些,这是因为均值滤波就是将图像做平滑处理,像素值高的像素会被拉低,像素值低像素会被拉高,趋向于一个平均值,所以图像会变模糊一些。
加入椒盐噪声后的lena
加入椒盐噪声后Mean_Filter lena
椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素。椒盐噪声是一种因为信号脉冲强度引起的噪声。这里可以看出均值滤波对虽然是对图像进行平滑处理,但是对椒盐噪声基本无作用,要对椒盐噪声处理就要用中值滤波了,博主下一篇再接着做。
转载请注明出处:NingHeChuan(宁河川)
个人微信订阅号:开源FPGA
如果你想及时收到个人撰写的博文推送,可以扫描左边二维码(或者长按识别二维码)关注个人微信订阅号
知乎ID:NingHeChuan
微博ID:NingHeChuan