Json概述以及python对json的相关操作

时间:2023-01-03 23:13:28

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。

JSON建构于两种结构:

“名称/值”对的集合(A collection of name/value pairs)。不同的语言中,它被理解为对象(object),纪录(record),结构(struct),字典(dictionary),哈希表(hash table),有键列表(keyed list),或者关联数组 (associative array)。
值的有序列表(An ordered list of values)。在大部分语言中,它被理解为数组(array)。
这些都是常见的数据结构。事实上大部分现代计算机语言都以某种形式支持它们。这使得一种数据格式在同样基于这些结构的编程语言之间交换成为可能。

jso官方说明参见:http://json.org/
Python
操作json的标准api库参考:http://docs.python.org/library/json.html

对简单数据类型的encoding 和 decoding:

使用简单的json.dumps方法对简单数据类型进行编码,例如:

import json
obj = [[1,2,3],123,123.123,'abc',{'key1':(1,2,3),'key2':(4,5,6)}]
encodedjson = json.dumps(obj)
print repr(obj)
print encodedjson

输出:

[[1, 2, 3], 123, 123.123, 'abc', {'key2': (4, 5, 6), 'key1': (1, 2, 3)}]
[[1, 2, 3], 123, 123.123, "abc", {"key2": [4, 5, 6], "key1": [1, 2, 3]}]

通过输出的结果可以看出,简单类型通过encode之后跟其原始的repr()输出结果非常相似,但是有些数据类型进行了改变,例如上例中的元组则转换为了列表。在json的编码过程中,会存在从python原始类型向json类型的转化过程,具体的转化对照如下:

Json概述以及python对json的相关操作

json.dumps()方法返回了一个str对象encodedjson,我们接下来在对encodedjson进行decode,得到原始数据,需要使用的json.loads()函数:

decodejson = json.loads(encodedjson)
print type(decodejson)
print decodejson[4]['key1']
print decodejson

输出:

<type 'list'>
[1, 2, 3]
[[1, 2, 3], 123, 123.123, u'abc', {u'key2': [4, 5, 6], u'key1': [1, 2, 3]}]

loads方法返回了原始的对象,但是仍然发生了一些数据类型的转化。比如,上例中‘abc’转化为了unicode类型。从json到python的类型转化对照如下:

Json概述以及python对json的相关操作

json.dumps方法提供了很多好用的参数可供选择,比较常用的有sort_keys(对dict对象进行排序,我们知道默认dict是无序存放的),separators,indent等参数。

排序功能使得存储的数据更加有利于观察,也使得对json输出的对象进行比较,例如:

data1 = {'b':789,'c':456,'a':123}
data2 = {'a':123,'b':789,'c':456}
d1 = json.dumps(data1,sort_keys=True)
d2 = json.dumps(data2)
d3 = json.dumps(data2,sort_keys=True)
print d1
print d2
print d3
print d1==d2
print d1==d3

输出:

{"a": 123, "b": 789, "c": 456}
{"a": 123, "c": 456, "b": 789}
{"a": 123, "b": 789, "c": 456}
False
True

上例中,本来data1和data2数据应该是一样的,但是由于dict存储的无序特性,造成两者无法比较。因此两者可以通过排序后的结果进行存储就避免了数据比较不一致的情况发生,但是排序后再进行存储,系统必定要多做一些事情,也一定会因此造成一定的性能消耗,所以适当排序是很重要的。

indent参数是缩进的意思,它可以使得数据存储的格式变得更加优雅。

data1 = {'b':789,'c':456,'a':123}
d1 = json.dumps(data1,sort_keys=True,indent=4)
print d1

输出:

{
"a": 123,
"b": 789,
"c": 456
}

输出的数据被格式化之后,变得可读性更强,但是却是通过增加一些冗余的空白格来进行填充的。json主要是作为一种数据通信的格式存在的,而网络通信是很在乎数据的大小的,无用的空格会占据很多通信带宽,所以适当时候也要对数据进行压缩。separator参数可以起到这样的作用,该参数传递是一个元组,包含分割对象的字符串。

print 'DATA:', repr(data)
print 'repr(data)             :', len(repr(data))
print 'dumps(data)            :', len(json.dumps(data))
print 'dumps(data, indent=2)  :', len(json.dumps(data, indent=4))
print 'dumps(data, separators):', len(json.dumps(data, separators=(',',':')))

输出:

DATA: {'a': 123, 'c': 456, 'b': 789}
repr(data) : 30
dumps(data) : 30
dumps(data, indent=2) : 46
dumps(data, separators): 25

通过移除多余的空白符,达到了压缩数据的目的,而且效果还是比较明显的。

另一个比较有用的dumps参数是skipkeys,默认为False。 dumps方法存储dict对象时,key必须是str类型,如果出现了其他类型的话,那么会产生TypeError异常,如果开启该参数,设为True的话,则会比较优雅的过度。

data = {'b':789,'c':456,(1,2):123}
print json.dumps(data,skipkeys=True)

输出:

{"c": 456, "b": 789}

处理自己的数据类型

json模块不仅可以处理普通的python内置类型,也可以处理我们自定义的数据类型,而往往处理自定义的对象是很常用的。

首先,我们定义一个类Person。

class Person(object):
def __init__(self,name,age):
self.name = name
self.age = age
def __repr__(self):
return 'Person Object name : %s , age : %d' % (self.name,self.age)
if __name__ == '__main__':
p = Person('Peter',22)
print p

如果直接通过json.dumps方法对Person的实例进行处理的话,会报错,因为json无法支持这样的自动转化。通过上面所提到的json和python的类型转化对照表,可以发现,object类型是和dict相关联的,所以我们需要把我们自定义的类型转化为dict,然后再进行处理。这里,有两种方法可以使用。

方法一:自己写转化函数

import Person
import json p = Person.Person('Peter',22) def object2dict(obj):
#convert object to a dict
d = {}
d['__class__'] = obj.__class__.__name__
d['__module__'] = obj.__module__
d.update(obj.__dict__)
return d def dict2object(d):
#convert dict to object
if'__class__' in d:
class_name = d.pop('__class__')
module_name = d.pop('__module__')
module = __import__(module_name)
class_ = getattr(module,class_name)
args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args
inst = class_(**args) #create new instance
else:
inst = d
return inst d = object2dict(p)
print d
#{'age': 22, '__module__': 'Person', '__class__': 'Person', 'name': 'Peter'} o = dict2object(d)
print type(o),o
#<class 'Person.Person'> Person Object name : Peter , age : 22 dump = json.dumps(p,default=object2dict)
print dump
#{"age": 22, "__module__": "Person", "__class__": "Person", "name": "Peter"} load = json.loads(dump,object_hook = dict2object)
print load
#Person Object name : Peter , age : 22

上面代码已经写的很清楚了,实质就是自定义object类型和dict类型进行转化。object2dict函数将对象模块名、类名以及__dict__存储在dict对象里,并返回。dict2object函数则是反解出模块名、类名、参数,创建新的对象并返回。在json.dumps 方法中增加default参数,该参数表示在转化过程中调用指定的函数,同样在decode过程中json.loads方法增加object_hook,指定转化函数。

方法二:继承JSONEncoder和JSONDecoder类,覆写相关方法

JSONEncoder类负责编码,主要是通过其default函数进行转化,我们可以override该方法。同理对于JSONDecoder。

import Person
import json p = Person.Person('Peter',22) class MyEncoder(json.JSONEncoder):
def default(self,obj):
#convert object to a dict
d = {}
d['__class__'] = obj.__class__.__name__
d['__module__'] = obj.__module__
d.update(obj.__dict__)
return d class MyDecoder(json.JSONDecoder):
def __init__(self):
json.JSONDecoder.__init__(self,object_hook=self.dict2object)
def dict2object(self,d):
#convert dict to object
if'__class__' in d:
class_name = d.pop('__class__')
module_name = d.pop('__module__')
module = __import__(module_name)
class_ = getattr(module,class_name)
args = dict((key.encode('ascii'), value) for key, value in d.items()) #get args
inst = class_(**args) #create new instance
else:
inst = d
return inst d = MyEncoder().encode(p)
o = MyDecoder().decode(d) print d
print type(o), o

对于JSONDecoder类方法,稍微有点不同,但是改写起来也不是很麻烦。看代码应该就比较清楚了。

转自:http://www.cnblogs.com/coser/archive/2011/12/14/2287739.html

Json概述以及python对json的相关操作的更多相关文章

  1. Json概述以及python对json的相关操作&lpar;转&rpar;

    什么是json: JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.易于人阅读和编写.同时也易于机器解析和生成.它基于JavaScript Programm ...

  2. Json概述以及python对json的相关操作《转》

    什么是json: JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.易于人阅读和编写.同时也易于机器解析和生成.它基于JavaScript Programm ...

  3. json概述及python处理json等数据类型

    <一,概念> 序列化(Serialization):将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON.XML等.反序列化(deserialization): ...

  4. Phoenix简介概述,Phoenix的Java API 相关操作优秀案例

    Phoenix简介概述,Phoenix的Java API 相关操作优秀案例 一.Phoenix概述简介 二.Phoenix实例一:Java API操作 2.1 phoenix.properties 2 ...

  5. 026&period;Python面向对象类的相关操作以及对象和类的删除操作

    类的相关操作 定义的类访问共有成员的成员和方法 定义的类动态添加公有成员的属性和方法 定义的类删除公有成员的属性和方法 1 定义一个基本的类 #定义一个类 class Plane(): #添加一个共有 ...

  6. 011&period;Python的列表的相关操作

    一 列表的相关操作 1.1  列表的拼接 lst1 = [1,2,3] lst2 = [4,5,6] res = lst1 + lst2 print(res) 执行 [root@node10 pyth ...

  7. python对数据类型的相关操作

    一.int的相关操作 int只有一个相关操作,bit_length()   用于计算一个数字的二进制长度 二.bool的相关操作 1.把数字转换成bool,除了0,返回的都是True a = 10 p ...

  8. Python 基础之集合相关操作与函数和字典相关函数

    一:集合相关操作与相关函数 1.集合相关操作(交叉并补) (1)intersection() 交集 set1 = {"one","two","thre ...

  9. 初识python 字符串 列表 字典相关操作

    python基础(一): 运算符: 算术运算: 除了基本的+ - * / 以外,还需要知道 :  // 为取整除 返回的市商的整数部分 例如: 9 // 2  ---> 4  , 9.0 //  ...

随机推荐

  1. js parseInt 显示0

    parseInt 有第二个参数, 就是进制参数 parseInt("08", 10);  //表示这个数字是十进制的就不会出错了.

  2. 【Python⑤】python序列---list和tuple

    sequence 序列 sequence(序列)是一组有顺序的对象的集合.序列可以包含一个或多个元素,也可以没有任何元素. 我们之前所说的基本数据类型,都可以作为序列的对象.对象还可以是另一个序列.序 ...

  3. 使用Java 8 Lambda表达式对Employee类进行操作

    1,首先定义Employee类. package coffee.how.to.program.early.objects.chapter15; public class Employee { priv ...

  4. &lbrack;转&rsqb;ubuntu server:开机自动登录

    原文链接: Ed29.com http://ed29.com/ubuntu%E6%9C%8D%E5%8A%A1%E5%99%A8%E8%87%AA%E5%8A%A8%E7%99%BB%E5%BD%95 ...

  5. SQLiteDatabase里面的简单操作数据库的方法

    1.使用insert方法插入记录SQLiteDatabase的insert方法的签名为long insert(String table,String nullColumnHack,ContentVal ...

  6. postman测试方法的 时候总是出现状态码500

    postman测试方法的 时候总是出现状态码500   {     "timestamp": "2018-07-23T05:43:51.773+0000",   ...

  7. Codeforces 887D Ratings and Reality Shows

    Ratings and Reality Shows 参加talk show的时间肯定是在某个t[ i ]的后一秒, 枚举一下就好了. #include<bits/stdc++.h> #de ...

  8. rgferg

    dfgsdfg fdvgdsafg fgdfgdfg

  9. Linux:获取当前进程的执行文件的绝对路径

    摘要:本文介绍Linux的应用程序和内核模块获取当前进程执行文件绝对路径的实现方法. 注意:使用此方法时,如果执行一个指向执行文件的链接文件,则获得的不是链接文件的绝对路径,而是执行文件的绝对路径. ...

  10. zookeeper项目使用几点小结

    背景 前段时间学习了zookeeper后,在新的项目中刚好派上了用场,我在项目中主要负责分布式任务调度模块的开发,对我自己来说是个不小的挑战. 分布式的任务调度,技术上我们选择了zookeeper,具 ...