在枯燥的原理介绍之前,先看一道程序题,这在JAVA笔试面试中极为常见。
public class SSClass
{
static
{
System.out.println("SSClass");
}
}
public class SuperClass extends SSClass
{
static
{
System.out.println("SuperClass init!");
}
public static int value = 123;
public SuperClass()
{
System.out.println("init SuperClass");
}
}
public class SubClass extends SuperClass
{
static
{
System.out.println("SubClass init");
}
static int a;
public SubClass()
{
System.out.println("init SubClass");
}
}
public class NotInitialization
{
public static void main(String[] args)
{
System.out.println(SubClass.value);
}
}
运行结果:
SSClass
SuperClass init!
123
答案答对了嚒?
也许有人会疑问:为什么没有输出SubClass init。解释一下:对于静态字段,只有直接定义这个字段的类才会被初始化,因此通过其子类来引用父类中定义的静态字段,只会触发父类的初始化而不会触发子类的初始化。
上面就牵涉到了虚拟机类加载机制。如果有兴趣,可以继续看下去。
类加载基本概念
JAVA中的类加载指的是:将类的.class文件中的二进制数据读入到内存中,将其放在方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构,并向程序员提供了访问方法区内数据结构的接口。
类加载过程
类从被加载到虚拟机中开始,到卸载出内存为止,它的整个生命周期包括:加载、验证、准备、解析、初始化、使用、卸载(其中验证、准备、解析统称为连接阶段)。其中类加载的过程包括:加载、验证、准备、解析、初始化五个阶段,其中加载、验证、准备、初始化、卸载几个阶段的发生顺序是确定的,而解析阶段则不一定,它在有些情况下可以在初始化阶段之后开始(支持JAVA的运行时绑定,也称为动态绑定),另外这几个阶段不是按顺序完成的,因为通常是互相交叉地混合进行的,通常在一个阶段执行的过程中调用另一个阶段。
PS:简要说明下JAVA的绑定:绑定指的是把一个方法的调用与方法所在的类(方法主体)关联起来,对 Java 来说,绑定分为静态绑定和动态绑定。
·静态绑定:即前期绑定。在程序执行前方法已经被绑定,此时由编译器或其它连接程序实现。针对 Java,简单的可以理解为程序编译期的绑定。Java 当中的方法只有 final,static,private 和构造方法是前期绑定的。
·动态绑定:也叫运行时绑定。在运行时根据具体对象的类型进行绑定。在 Java 中,几乎所有的方法都是后期绑定的。
加载
在加载阶段,虚拟机需要完成以下三件事情:
·通过一个类的全限定名来获取其定义的二进制字节流,并没有指明要从一个Class文件中获取,可以从其他渠道,譬如:网络(最典型的应用便是 Applet)、Jar包中获取、其他文件(JSP应用)、动态生成、数据库等。
·将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
·在 Java 堆中生成一个代表这个类的 java.lang.Class 对象,作为对方法区中这些数据的访问入口。
相对于类加载过程的其他阶段而言,加载阶段(准确地说,是加载阶段获取类的二进制字节流的动作)是可控性最强的阶段,因为开发人员既可以使用系统提供的类加载器来完成加载,也可以自定义自己的类加载器来完成加载。
加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,而且在 Java 堆中也创建一个java.lang.Class类的对象,这样便可以通过该对象访问方法区中的这些数据。
说到加载,不得不提到类加载器,下面就具体讲述下类加载器。
顾名思义,类加载器(class loader)用来加载 Java 类到 Java 虚拟机中。一般来说,Java 虚拟机使用 Java 类的方式如下:Java 源程序(.java 文件)在经过 Java 编译器编译之后就被转换成 Java 字节代码(.class 文件)。类加载器负责读取 Java 字节代码,并转换成 java.lang.Class类的一个实例。每个这样的实例用来表示一个 Java 类。
类加载器虽然只用于实现类的加载动作,但它在 Java 程序中起到的作用却远远不限于类的加载阶段。对于任意一个类,都需要由它的类加载器和这个类本身一同确定其在就 Java 虚拟机中的唯一性,也就是说,即使两个类来源于同一个 Class 文件,只要加载它们的类加载器不同,那这两个类就必定不相等。这里的“相等”包括了代表类的 Class 对象的equals()、isAssignableFrom()、isInstance()等方法的返回结果,也包括了使用 instanceof 关键字对对象所属关系的判定结果。
站在 Java 虚拟机的角度来讲,只存在两种不同的类加载器:
·启动类加载器:它使用 C++ 实现(这里仅限于 Hotspot,也就是 JDK1.5 之后默认的虚拟机,有很多其他的虚拟机是用 Java 语言实现的),是虚拟机自身的一部分。
·所有其他的类加载器:这些类加载器都由 Java 语言实现,独立于虚拟机之外,并且全部继承自抽象类 java.lang.ClassLoader,这些类加载器需要由启动类加载器加载到内存中之后才能去加载其他的类。
站在 Java 开发人员的角度来看,类加载器可以大致划分为以下三类:
·启动类加载器:Bootstrap ClassLoader,跟上面相同。它负责加载存放在JDK\jre\li(JDK 代表 JDK 的安装目录,下同)下,或被-Xbootclasspath参数指定的路径中的,并且能被虚拟机识别的类库(如 rt.jar,所有的java.*开头的类均被 Bootstrap ClassLoader 加载)。启动类加载器是无法被 Java 程序直接引用的。
·扩展类加载器:Extension ClassLoader,该加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载JDK\jre\lib\ext目录中,或者由 java.ext.dirs 系统变量指定的路径中的所有类库(如javax.*开头的类),开发者可以直接使用扩展类加载器。
·应用程序类加载器:该类加载器由sun.misc.Launcher$AppClassLoader 来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。
应用程序都是由这三种类加载器互相配合进行加载的,如果有必要,我们还可以加入自定义的类加载器。因为 JVM 自带的 ClassLoader 只是懂得从本地文件系统加载标准的 java class 文件,因此如果编写了自己的 ClassLoader,便可以做到如下几点:
·在执行非置信代码之前,自动验证数字签名。
·动态地创建符合用户特定需要的定制化构建类。
·从特定的场所取得 java class,例如数据库中和网络中。
事实上当使用 Applet 的时候,就用到了特定的 ClassLoader,因为这时需要从网络上加载 java class,并且要检查相关的安全信息,应用服务器也大都使用了自定义的 ClassLoader 技术。
验证阶段
验证的目的是为了确保 Class 文件中的字节流包含的信息符合当前虚拟机的要求,而且不会危害虚拟机自身的安全。不同的虚拟机对类验证的实现可能会有所不同,但大致都会完成以下四个阶段的验证:
·文件格式的验证:验证字节流是否符合 Class 文件格式的规范,并且能被当前版本的虚拟机处理,该验证的主要目的是保证输入的字节流能正确地解析并存储于方法区之内。经过该阶段的验证后,字节流才会进入内存的方法区中进行存储,后面的三个验证都是基于方法区的存储结构进行的。
·元数据验证:对类的元数据信息进行语义校验(其实就是对类中的各数据类型进行语法校验),保证不存在不符合 Java 语法规范的元数据信息。
·字节码验证:该阶段验证的主要工作是进行数据流和控制流分析,对类的方法体进行校验分析,以保证被校验的类的方法在运行时不会做出危害虚拟机安全的行为。
·符号引用验证:这是最后一个阶段的验证,它发生在虚拟机将符号引用转化为直接引用的时候(解析阶段中发生该转化,后面会有讲解),主要是对类自身以外的信息(常量池中的各种符号引用)进行匹配性的校验。
准备阶段
准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:
·这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在 Java 堆中。
·这里所设置的初始值通常情况下是数据类型默认的零值(如 0、0L、null、false 等),而不是被在 Java 代码中被显式地赋予的值。
假设一个类变量的定义为:
public static int value = 3;
那么变量 value 在准备阶段后的初始值为 0,而不是 3,因为这时候尚未开始执行任何 Java 方法,而把 value 赋值为 3 的 public static 指令是在程序编译后,存放于类构造器 ()方法之中的,所以把 value 赋值为 3 的动作将在初始化阶段才会执行。
至于“特殊情况”是指:
public static final int value=123;
即当类字段的字段属性是Constant Value时,会在准备阶段初始化为指定的值,所以标注为final之后,value的值在准备阶段初始化为123而非0。所以,如果类字段的字段属性表中存在 Const Value 属性,即同时被 final 和 static 修饰,那么在准备阶段变量 value 就会被初始化为 Const Value 属性所指定的值。
这里还需要注意如下几点:
·对基本数据类型来说,对于类变量(static)和全局变量,如果不显式地对其赋值而直接使用,则系统会为其赋予默认的零值,而对于局部变量来说,在使用前必须显式地为其赋值,否则编译时不通过。
·对于同时被 static 和 final 修饰的常量,必须在声明的时候就为其显式地赋值,否则编译时不通过;而只被 final 修饰的常量则既可以在声明时显式地为其赋值,也可以在类初始化时显式地为其赋值,总之,在使用前必须为其显式地赋值,系统不会为其赋予默认零值。
·对于引用数据类型 reference 来说,如数组引用、对象引用等,如果没有对其进行显式地赋值而直接使用,系统都会为其赋予默认的零值,即null。
·如果在数组初始化时没有对数组中的各元素赋值,那么其中的元素将根据对应的数据类型而被赋予默认的零值。
解析阶段
解析阶段是虚拟机将常量池中的符号引用转化为直接引用的过程。
·符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能够无歧义的定位到目标即可。
·直接引用可以是
(1)直接指向目标的指针(比如,指向“类型”【Class对象】、类变量、类方法的直接引用可能是指向方法区的指针)
(2)相对偏移量(比如,指向实例变量、实例方法的直接引用都是偏移量)
(3)一个能间接定位到目标的句柄
直接引用是和虚拟机的布局相关的,同一个符号引用在不同的虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经被加载入内存中了。
前面说解析阶段可能开始于初始化之前,也可能在初始化之后开始,虚拟机会根据需要来判断,到底是在类被加载器加载时就对常量池中的符号引用进行解析(初始化之前),还是等到一个符号引用将要被使用前才去解析它(初始化之后)。
对同一个符号引用进行多次解析请求时很常见的事情,虚拟机实现可能会对第一次解析的结果进行缓存(在运行时常量池中记录直接引用,并把常量标示为已解析状态),从而避免解析动作重复进行。
解析动作主要针对类或接口、字段、类方法、接口方法四类符号引用进行,分别对应于常量池中的CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info、CONSTANT_InterfaceMethodref_info四种常量类型(.Class文件的符号引用)。
1、类或接口的解析(CONSTANT_Class_info):判断所要转化成的直接引用是对数组类型,还是普通的对象类型的引用,从而进行不同的解析。
2、字段解析(CONSTANT_Fieldref_info):对字段进行解析时,会先在本类中查找是否包含有简单名称和字段描述符都与目标相匹配的字段,如果有,则查找结束;如果没有,则会按照继承关系从上往下递归搜索该类所实现的各个接口和它们的父接口,还没有,则按照继承关系从上往下递归搜索其父类,直至查找结束。从下面一段代码的执行结果中很容易看出来字段解析的搜索顺序:
class Super{
public static int m = 11;
static{
System.out.println("执行了super类静态语句块");
}
}
class Father extends Super{
public static int m = 33;
static{
System.out.println("执行了父类静态语句块");
}
}
class Child extends Father{
static{
System.out.println("执行了子类静态语句块");
}
}
public class StaticTest{
public static void main(String[] args){
System.out.println(Child.m);
}
}
执行结果:
执行了super类静态语句块
执行了父类静态语句块
33
如果注释掉 Father 类中对 m 定义的那一行,则输出结果如下:
执行了super类静态语句块
11
static 变量发生在静态解析阶段,也即是初始化之前,此时已经将字段的符号引用转化为了内存引用,也便将它与对应的类关联在了一起,由于在子类中没有查找到与 m 相匹配的字段,那么 m 便不会与子类关联在一起,因此并不会触发子类的初始化。
最后需要注意:理论上是按照上述顺序进行搜索解析,但在实际应用中,虚拟机的编译器实现可能要比上述规范要求的更严格一些。如果有一个同名字段同时出现在该类的接口和父类中,或同时在自己或父类的接口中出现,编译器可能会拒绝编译。
interface Super{
public static int m = 11;
}
class Father implements Super{
public static int m = 33;
static{
System.out.println("执行了父类静态语句块");
}
}
class Child extends Father implements Super{
static{
System.out.println("执行了子类静态语句块");
}
}
public class StaticTest{
public static void main(String[] args){
System.out.println(Child.m); //报错
}
}
报错:
Exception in thread "main" java.lang.Error: Unresolved compilation problem:
The field Child.m is ambiguous
3、类方法解析:对类方法的解析与对字段解析的搜索步骤差不多,只是多了判断该方法所处的是类还是接口的步骤,而且对类方法的匹配搜索,是先搜索父类,再搜索接口。
4、接口方法解析:与类方法解析步骤类似,知识接口不会有父类,因此,只递归向上搜索父接口就行了。
初始化
类初始化阶段是类加载过程的最后一步,到了初始化阶段,才真正开始执行类中定义的java程序代码。在准备阶段,变量已经赋过一次系统要求的初始值,而在初始化阶段,则根据程序猿通过程序制定的主观计划去初始化类变量和其他资源,或者说:初始化阶段是执行类构造器的clinit()方法的过程。(在字节码层面init()表示构造方法,clinit()表示静态程序块。)
这里简单说明下()方法的执行规则:
1、类的初始化方法clinit()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块static{}中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问。如下:
public class Test
{
static
{
i=0;
System.out.println(i);//这句编译器会报错:Cannot reference a field before it is defined(非法向前应用)
}
static int i=1;
}
那么去掉报错的那句,改成下面:
public class Test
{
static
{
i=0;
// System.out.println(i);
}
static int i=1;
public static void main(String args[])
{
System.out.println(i);
}
}
输出结果是什么呢?当然是1啦~在准备阶段我们知道i=0,然后类初始化阶段按照顺序执行,首先执行static块中的i=0,接着执行static赋值操作i=1,最后在main方法中获取i的值为1。
2、clinit()方法与实例构造器init()方法(类的构造函数)不同,它不需要显式地调用父类构造器,虚拟机会保证在子类的clinit()方法执行之前,父类的clinit()方法已经执行完毕。因此,在虚拟机中第一个被执行的clinit()方法的类肯定是java.lang.Object。(从上往下)
看另一个例子:
class Father{
public static int a = 1;
static{
a = 2;
}
}
class Child extends Father{
public static int b = a;
}
public class ClinitTest{
public static void main(String[] args){
System.out.println(Child.b);
}
}
执行上面的代码,会打印出 2,也就是说 b 的值被赋为了 2。
我们来看得到该结果的步骤。首先在准备阶段为类变量分配内存并设置类变量初始值,这样 A 和 B 均被赋值为默认值 0,而后再在调用clinit()方法时给他们赋予程序中指定的值。当我们调用 Child.b 时,触发 Child 的clinit()方法,根据规则 2,在此之前,要先执行完其父类Father的clinit()方法,又根据规则1,在执行clinit()方法时,需要按 static 语句或 static 变量赋值操作等在代码中出现的顺序来执行相关的 static 语句,因此当触发执行 Father的clinit()方法时,会先将a赋值为 1,再执行 static 语句块中语句,将 a 赋值为 2,而后再执行 Child 类的clinit()方法,这样便会将 b 的赋值为 2。
如果我们颠倒一下Father类中“public static int a = 1;”语句和“static语句块”的顺序,程序执行后,则会打印出1。很明显是根据规则 1,执行 Father 的()方法时,根据顺序先执行了 static 语句块中的内容,后执行了“public static int a = 1;”语句。
另外,在颠倒二者的顺序之后,如果在 static 语句块中对 a 进行访问(比如将 a 赋给某个变量),在编译时将会报错,因为根据规则 1,它只能对 a 进行赋值,而不能访问。
3、clinit()方法对于类或接口来说并不是必须的,如果一个类中没有静态语句块,也没有对类变量的赋值操作,那么编译器可以不为这个类生成clinit()方法。
4、接口中不能使用静态语句块,但仍然有类变量(final static)初始化的赋值操作,因此接口与类一样会生成clinit()方法。但是接口与类不同的是:执行接口的clinit()方法不需要先执行父接口的clinit()方法,只有当父接口中定义的变量被使用时,父接口才会被初始化。另外,接口的实现类在初始化时也一样不会执行接口的clinit()方法。
5、虚拟机会保证一个类的clinit()方法在多线程环境中被正确地加锁和同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的clinit()方法,其他线程都需要阻塞等待,直到活动线程执行clinit()方法完毕。如果在一个类的clinit()方法中有耗时很长的操作,那就可能造成多个线程阻塞,在实际应用中这种阻塞往往是很隐蔽的。
public class DealLoopTest
{
static class DeadLoopClass
{
static
{
if(true)
{
System.out.println(Thread.currentThread()+"init DeadLoopClass");
while(true)
{
}
}
}
}
public static void main(String[] args)
{
Runnable script = new Runnable(){
public void run()
{
System.out.println(Thread.currentThread()+" start");
DeadLoopClass dlc = new DeadLoopClass();
System.out.println(Thread.currentThread()+" run over");
}
};
Thread thread1 = new Thread(script);
Thread thread2 = new Thread(script);
thread1.start();
thread2.start();
}
}
运行结果:(即一条线程在死循环以模拟长时间操作,另一条线程在阻塞等待)
Thread[Thread-0,5,main] start
Thread[Thread-1,5,main] start
Thread[Thread-0,5,main]init DeadLoopClass
需要注意的是,其他线程虽然会被阻塞,但如果执行clinit()方法的那条线程退出clinit()方法后,其他线程唤醒之后不会再次进入clinit()方法。同一个类加载器下,一个类型只会初始化一次。
将上面代码中的静态块替换如下:
static
{
System.out.println(Thread.currentThread() + "init DeadLoopClass");
try
{
TimeUnit.SECONDS.sleep(10);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
运行结果:
Thread[Thread-0,5,main] start
Thread[Thread-1,5,main] start
Thread[Thread-1,5,main]init DeadLoopClass (之后sleep 10s)
Thread[Thread-1,5,main] run over
Thread[Thread-0,5,main] run over
虚拟机规范(jdk1.7)严格规定了有且只有5种情况必须对类进行“初始化”(而加载、验证、准备自然需要在此之前开始):
1、遇到new,getstatic,putstatic,invokestatic这失调字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这4条指令的最常见的Java代码场景是:使用new关键字实例化对象的时候、读取或设置一个类的静态字段(被final修饰、已在编译器把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。
2、使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
3、当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
4、当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。
5、当使用jdk1.7动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getstatic,REF_putstatic,REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行初始化,则需要先出触发其初始化。
开篇已经举了一个范例:通过子类引用父类的静态字段,不会导致子类初始化。
这里再举两个例子:
1、通过数组定义来引用类,不会触发此类的初始化:
public class SSClass
{
static
{
System.out.println("SSClass");
}
}
public class SuperClass extends SSClass
{
static
{
System.out.println("SuperClass init!");
}
public static int value = 123;
public SuperClass()
{
System.out.println("init SuperClass");
}
}
public class NotInitialization
{
public static void main(String[] args)
{
SuperClass[] sca = new SuperClass[10];
}
}
运行结果:(无)
2、常量在编译阶段会存入调用类的常量池中,本质上并没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化:
public class ConstClass
{
static
{
System.out.println("ConstClass init!");
}
public static final String HELLOWORLD = "hello world";
}
public class NotInitialization
{
public static void main(String[] args)
{
System.out.println(ConstClass.HELLOWORLD);
}
}
运行结果:hello world
说明:就暂且写到这里,有待日后的修改完善,附上参考资料:
http://blog.csdn.net/u013256816/article/details/50829596#t1
http://wiki.jikexueyuan.com/project/java-vm/class-loading-mechanism.html
http://www.cnblogs.com/ityouknow/p/5603287.html
http://www.cnblogs.com/ITtangtang/p/3978102.html
http://blog.csdn.net/java528416037/article/details/48463639