TensorFlowSharp入门使用C#编写TensorFlow人工智能应用

时间:2022-05-15 05:14:25

标签:人工智能

TensorFlowSharp入门使用C#编写TensorFlow人工智能应用学习。

TensorFlow简单介绍

TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。

TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用TensorFlow。任何基于梯度的机器学习算法都能够受益于TensorFlow的自动分化(auto-differentiation)。通过灵活的Python接口,要在TensorFlow中表达想法也会很容易。

TensorFlow 对于实际的产品也是很有意义的。将思路从桌面GPU训练无缝搬迁到手机中运行。

示例Python代码:

import tensorflow as tfimport numpy as np# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 0.1 + 0.3# Try to find values for W and b that compute y_data = W * x_data + b# (We know that W should be 0.1 and b 0.3, but TensorFlow will# figure that out for us.)W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b# Minimize the mean squared errors.loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss)# Before starting, initialize the variables.  We will ‘run‘ this first.init = tf.global_variables_initializer()# Launch the graph.sess = tf.Session() sess.run(init)# Fit the line.for step in range(201):     sess.run(train)    if step % 20 == 0:        print(step, sess.run(W), sess.run(b))# Learns best fit is W: [0.1], b: [0.3]

使用TensorFlowSharp 

GitHub:https://github.com/migueldeicaza/TensorFlowSharp

官方源码库,该项目支持跨平台,使用Mono。

可以使用NuGet 安装TensorFlowSharp,如下:

Install-Package TensorFlowSharp编写简单应用

使用VS2017新建一个.NET Framework 控制台应用 tensorflowdemo,接着添加TensorFlowSharp 引用。

TensorFlowSharp 包比较大,需要耐心等待。

然后在项目属性中生成->平台目标 改为 x64

打开Program.cs 写入如下代码:

        static void Main(string[] args)         {            using (var session = new TFSession())             {                var graph = session.Graph;                 Console.WriteLine(TFCore.Version);                var a = graph.Const(2);                var b = graph.Const(3);                 Console.WriteLine("a=2 b=3");                // 两常量加                 var addingResults = session.GetRunner().Run(graph.Add(a, b));                var addingResultValue = addingResults[0].GetValue();                 Console.WriteLine("a+b={0}", addingResultValue);                // 两常量乘                 var multiplyResults = session.GetRunner().Run(graph.Mul(a, b));                var multiplyResultValue = multiplyResults[0].GetValue();                 Console.WriteLine("a*b={0}", multiplyResultValue);                var tft = new TFTensor(Encoding.UTF8.GetBytes($"Hello TensorFlow Version {TFCore.Version}! LineZero"));                var hello = graph.Const(tft);                var helloResults = session.GetRunner().Run(hello);                 Console.WriteLine(Encoding.UTF8.GetString((byte[])helloResults[0].GetValue()));             }             Console.ReadKey();         }

运行程序结果如下: