synchronized是重量级锁,效率不高。但在jdk 1.6中对synchronize的实现进行了各种优化,使得它显得不是那么重了。jdk1.6对锁的实现引入了大量的优化,如自旋锁、自适应自旋锁、锁消除、锁粗化等技术来减少锁操作的开销。
锁主要存在四中状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。
注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。
锁优化----自旋锁
避免线程切换带来的开销:
自旋是为了短时间尽快获取锁:
自旋锁在JDK 1.4.2中引入,默认关闭,但是可以使用-XX:+UseSpinning开开启,在JDK1.6中默认开启。同时自旋的默认次数为10次,可以通过参数-XX:PreBlockSpin来调整;如果通过参数-XX:preBlockSpin来调整自旋锁的自旋次数,会带来诸多不便。假如我将参数调整为10,但是系统很多线程都是等你刚刚退出的时候就释放了锁(假如你多自旋一两次就可以获取锁),你是不是很尴尬。于是JDK1.6引入自适应的自旋锁,让虚拟机会变得越来越聪明。
锁优化----自适应自旋锁
自适应自旋锁是为了确定合理的自旋次数:
JDK 1.6引入了更加聪明的自旋锁,即自适应自旋锁。所谓自适应就意味着自旋的次数不再是固定的,它是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。它怎么做呢?线程如果自旋成功了,那么下次自旋的次数会更加多,因为虚拟机认为既然上次成功了,那么此次自旋也很有可能会再次成功,那么它就会允许自旋等待持续的次数更多。反之,如果对于某个锁,很少有自旋能够成功的,那么在以后要或者这个锁的时候自旋的次数会减少甚至省略掉自旋过程,以免浪费处理器资源。
锁优化----锁消除
JVM检测到不可能存在共享数据竞争即不需要同步时,JVM会对这些同步锁进行锁消除,不需要我们处理:
public void test(){
Vector<Integer> vector = new Vector<Integer>();
for(int i = 0 ; i < 10 ; i++){
vector.add(i);
}
System.out.println(vector);
}
锁优化----锁粗化
JVM将多个连续的加锁、解锁操作扩展成一个范围更大的锁,不需要我们处理:
在使用同步锁的时候,需要让同步块的作用范围尽可能小,仅在共享数据的实际作用域中才进行同步,这样做的目的是为了使需要同步的操作量尽可能缩小,如果存在锁竞争,那么等待锁的线程也能尽快拿到锁。在大多数的情况下,上述观点是正确的。但是如果一系列的连续加锁解锁操作,可能会导致不必要的性能损耗,所以引入锁粗化的概念。
锁粗话概念比较好理解,就是将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。如上面实例:vector每次add的时候都需要加锁操作,JVM检测到对同一个对象(vector)连续加锁、解锁操作,会合并一个更大范围的加锁、解锁操作,即加锁解锁操作会移到for循环之外。