在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。
据百度百科介绍:
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k→s)
sittin (e→i)
sitting (→g)
俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。因此也叫Levenshtein Distance。
例如
- 如果str1="ivan",str2="ivan",那么经过计算后等于 0。没有经过转换。相似度=1-0/Math.Max(str1.length,str2.length)=1
- 如果str1="ivan1",str2="ivan2",那么经过计算后等于1。str1的"1"转换"2",转换了一个字符,所以距离是1,相似度=1-1/Math.Max(str1.length,str2.length)=0.8
应用 DNA分析
拼字检查
语音辨识
抄袭侦测
感谢大石头在评论中给出一个很好的关于此方法应用的连接 补充在此:
小规模的字符串近似搜索,需求类似于搜索引擎中输入关键字,出现类似的结果列表,文章连接:【算法】字符串近似搜索
算法过程
- str1或str2的长度为0返回另一个字符串的长度。 if(str1.length==0) return str2.length; if(str2.length==0) return str1.length;
- 初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
- 扫描两字符串(n*m级的),如果:str1 == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i,j]赋于d[i-1,j]+1 、d[i,j-1]+1、d[i-1,j-1]+temp三者的最小值。
- 扫描完后,返回矩阵的最后一个值d[n][m]即是它们的距离。
计算相似度公式:1-它们的距离/两个字符串长度的最大值。
为了直观表现,我将两个字符串分别写到行和列中,实际计算中不需要。我们用字符串“ivan1”和“ivan2”举例来看看矩阵中值的状况:
1、第一行和第一列的值从0开始增长
i | v | a | n | 1 | ||
0 | 1 | 2 | 3 | 4 | 5 | |
i | 1 | |||||
v | 2 | |||||
a | 3 | |||||
n | 4 | |||||
2 | 5 |
2、i列值的产生 Matrix[i - 1, j] + 1 ; Matrix[i, j - 1] + 1 ; Matrix[i - 1, j - 1] + t
i | v | a | n | 1 | ||
0+t=0 | 1+1=2 | 2 | 3 | 4 | 5 | |
i | 1+1=2 | 取三者最小值=0 | ||||
v | 2 | 依次类推:1 | ||||
a | 3 | 2 | ||||
n | 4 | 3 | ||||
2 | 5 | 4 |
3、V列值的产生
i | v | a | n | 1 | ||
0 | 1 | 2 | ||||
i | 1 | 0 | 1 | |||
v | 2 | 1 | 0 | |||
a | 3 | 2 | 1 | |||
n | 4 | 3 | 2 | |||
2 | 5 | 4 | 3 |
依次类推直到矩阵全部生成
i | v | a | n | 1 | ||
0 | 1 | 2 | 3 | 4 | 5 | |
i | 1 | 0 | 1 | 2 | 3 | 4 |
v | 2 | 1 | 0 | 1 | 2 | 3 |
a | 3 | 2 | 1 | 0 | 1 | 2 |
n | 4 | 3 | 2 | 1 | 0 | 1 |
2 | 5 | 4 | 3 | 2 | 1 | 1 |
最后得到它们的距离=1
相似度:1-1/Math.Max(“ivan1”.length,“ivan2”.length) =0.8
转载自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981
字符串相似度算法(编辑距离算法 Levenshtein Distance)的更多相关文章
-
[Irving]字符串相似度-字符编辑距离算法(c#实现)
编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字 ...
-
扒一扒编辑距离(Levenshtein Distance)算法
最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...
-
Java 比较两个字符串的相似度算法(Levenshtein Distance)
转载自: https://blog.csdn.net/JavaReact/article/details/82144732 算法简介: Levenshtein Distance,又称编辑距离,指的是两 ...
-
编辑距离算法(Levenshtein)
编辑距离定义: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括:将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...
-
Go 实现字符串相似度计算函数 Levenshtein 和 SimilarText
[转]http://www.syyong.com/Go/Go-implements-the-string-similarity-calculation-function-Levenshtein-and ...
-
字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...
-
用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...
-
[转]字符串相似度算法(编辑距离算法 Levenshtein Distance)
转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...
-
字符串相似度算法——Levenshtein Distance算法
Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...
随机推荐
-
2014牡丹江网络zoj3816Generalized Palindromic Number(dfs或者bfs)
#include <iostream> #include <stdio.h> #include <cmath> #include <algorithm> ...
-
Flex(flash)检测摄像头的3种状态(是否被占用,没安装摄像头,正常)
在视频程序的编写过程中,我们经常要使用摄像头,在使用摄像头前有必要对摄像头的现有状态做个检测: 1.被占用 2.没安装摄像头 3.正常 camera=Camera.getCamera(); ...
-
setInterval和setTimeout的区别
setInterval会每隔指定的毫秒数后反复执行指定代码. setTimeout只会在指定的毫秒数后执行一次指定代码. setInterval的用法: // 创建(创建后即开始计时) var int ...
-
(2)java中的集中关系,is a, has a, 继承,重点聊聊继承
java中常见的类关系(javacore上面也有介绍道的) 1.is a关系() 2.has a 整体与局部的关系 3.继承关系 是现实世界中存在而上面两种关系又无法描述的 当然谈的最多的是继承关系, ...
-
Webdriver API之元素定位
Webdriver提供了8种元素定位方法:id.name.class name.tag name.link text.partial link text.xpath.css selector 一.以上 ...
-
Linux打包命令 - tar
上一篇文章谈到的命令大多仅能针对单一文件来进行压缩,虽然 gzip 与 bzip2 也能够针对目录来进行压缩, 不过,这两个命令对目录的压缩指的是『将目录内的所有文件 "分别" 进 ...
-
jQuery中哪几种选择器
基本选择器:直接根据id,css类名,元素名返回dom元素: 层次选择器:也叫路径选择器: $("div span") 选取<div>里的所有<span>元 ...
-
手机app抓包
简介 爬虫是cs架构中的c端 原理是模拟浏览器向服务器发送请求 如果要爬取手机APP的数据,APP也是服务端与浏览器性质相同 我们只要获取到手机APP给服务器发送数据 并加以分析就能模拟它的请求 从而 ...
-
jsp-servlet 的相关请求路径问题 —url
jsp-servlet 的相关请求路径问题 —url 本文章主要解决的几方面问题如下: 常见涉及路径元素: jsp页面请求和servlet请求转发.重定向的关系 如何避免下一步请求受上一步请求在UR ...
-
DRBD架构详解(原创)
DRBD概述Distributed Replicated Block Device(DRBD)是一种基于软件的,无共享,复制的存储解决方案,在服务器之间的对块设备(硬盘,分区,逻辑卷等)进行镜像.DR ...