题解:
因为期望线性可加,所以可以对每个方格单独考虑贡献。
每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)
每个方格至少被粉刷过一次的概率=1 - 一次都没被粉刷过的概率
因为每次选择都不互相影响,因此我们实际上只需要计算对于每一次选择而言,每个方格不被粉刷的概率,设这个概率为t,那么k次都没被粉刷过的概率就为$t^{k}$.
对于一个方格而言,如果它在一次选择中不被粉刷,那么就意味这这次选中的2个点都在它的同一个方向(左右上下)。但是这样算会把一些区域的方案计算2次(例如左边和上面这2个矩形的重叠部分内的方案就被计算了2次,因此再减去这些重叠部分的贡献即可)
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define RL register long long
#define h(x) (1.0 * x * x)//这里要乘1.0转double
#define LL long long LL n, m, k; double ans; void pre(){
scanf("%lld%lld%lld", &k, &n, &m);
} double qpow(double x, int have)
{
double rnt = ;
while(have)
{
if(have & ) rnt *= x;
x *= x, have >>= ;
}
return rnt;
} void work()
{
double all = h(n * m);
for(R i = ; i <= n; i ++)
{
for(R j = ; j <= m; j ++)
{
double t = h((i - ) * m) + h((n - i) * m) + h((j - ) * n) + h((m - j) * n);
t -= h((i - ) * (j - )) + h((i - ) * (m - j)) + h((n - i) * (j - )) + h((n - i) * (m - j));
//printf("%lf\n", t);
ans += - qpow(t / all, k);
}
}
if(ans - (int) ans >= 0.499999) printf("%lld\n", ((LL)ans) + );
else printf("%lld\n", (LL) ans);
} int main()
{
freopen("in.in", "r", stdin);
pre();
work();
fclose(stdin);
return ;
}