朴素贝叶斯算法的python实现 -- 机器学习实战

时间:2024-01-09 12:57:44
 import numpy as np
import re #词表到向量的转换函数
def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec =[0,1,0,1,0,1] #1代表侮辱性文字,0代表正常言论
return postingList, classVec #创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
vocabSet = set([]) #创建一个空集
for document in dataSet:
vocabSet = vocabSet | set(document) #创建两个集合的并集
return list(vocabSet) #词集模型:文档中的每个词在词集中只出现一次
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList) #创建长度与词汇表相同,元素都为0的向量
for word in inputSet:
if word in vocabList: #将出现在文档中的词汇在词汇表中对应词汇位置置1
returnVec[vocabList.index(word)] = 1
else:
print ("the word: %s isn't in my Vocabulary" % (word))
return returnVec #词袋模型: 文档中的每个词在词袋中可以出现多次
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec #朴素贝叶斯分类器训练函数
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
#p0Num = np.zeros(numWords)
#p1Num = np.zeros(numWords)
#p0Denom = 0.0
#p1Denom = 0.0
p0Num = np.ones(numWords) #|利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,
p1Num = np.ones(numWords) #|如果其中一个概率值为0,那么最后的乘积也为0.
p0Denom = 2.0 #|为降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2
p1Denom = 2.0 #|(拉普拉斯平滑)
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
#p1Vect = p1Num/p1Denom
#p0Vect = p0Num/p0Denom
p1Vect = np.log(p1Num/p1Denom) #|当太多很小的数相乘时,程序会下溢出,对乘积取自然对数可以避免下溢出或浮点数舍入导致的错误
p0Vect = np.log(p0Num/p0Denom) #|同时,采用自然对数进行处理不会有任何损失。ln(a*b)=ln(a)+ln(b)
return p0Vect, p1Vect, pAbusive #朴素贝叶斯分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1) #元素相乘得到概率值
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0 #便利函数,封装所有操作
def testingNB():
listOposts, listClasses = loadDataSet()
myVocabList = createVocabList(listOposts)
trainMat = []
for postinDoc in listOposts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(np.array(trainMat), np.array(listClasses)) #获取训练文档返回的概率值
testEntry = ['love', 'my', 'dalmation'] #正面测试文档
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #词汇表
print (testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)) #分类结果
testEntry = ['stupid', 'garbage'] #侮辱性测试文档
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #词汇表
print (testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)) #分类结果 #文件解析
def textParse(bigString):
listOfTokens = re.split(r'\W+', bigString) #原书中的模式为\W*,匹配0个或多个
return [tok.lower() for tok in listOfTokens if len(tok) > 2] #完整的垃圾邮件测试函数
def spamTest():
docList=[]; classList=[]; fullText=[]
for i in range(1, 26): #导入并解析文件
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(range(50)); testSet=[]
for i in range(10): #随机构建训练集与测试集
randIndex = int(np.random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses=[]
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))
errorCount = 0
for docIndex in testSet: #对测试集分类并计算错误率
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print ('The error rate is: ', float(errorCount/len(testSet))) #Simple unit test of func: loadDataSet(), createVocabList(), setOfWords2Vec
#listOPosts, listClassed = loadDataSet()
#myVocabList =createVocabList(listOPosts)
#print (myVocabList)
#res = setOfWords2Vec(myVocabList, listOPosts[0])
#print (res) #Simple unit test of func: trainNB0()
#listOposts, listClasses = loadDataSet()
#myVocabList = createVocabList(listOposts)
#trainMat = []
#for postinDoc in listOposts:
# trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
#p0V, p1V, pAb = trainNB0(trainMat, listClasses)
#print (p0V); print (p1V); print (pAb) #Simple unit test of func: testingNB()
#testingNB() spamTest()

 Output:

The error rate is:  0.1

背景:为什么要做平滑处理?

  零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0。这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0。

拉普拉斯的理论支撑

  为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑。
  假定训练样本很大时,每个分量x的计数加1造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题。

根据现实情况修改分类器

  除了平滑处理,另一个遇到的问题是下溢出,这是由于太多很小的数相乘造成的。当计算乘积P(w0|c1)P(w1|c1)P(w2|c1)...P(wN|c1)时, 由于大部分因子都非常小,所以程序会下溢出或者得不到正确的答案。一种解决办法是对乘积取自然对数。在代数中有ln(a*b) = ln(a) + ln(b),于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。

Reference:

《机器学习实战》