Watto, the owner of a spare parts store, has recently got an order for the mechanism that can process strings in a certain way. Initially the memory of the mechanism is filled withn strings. Then the mechanism should be able to process queries of the following type: "Given strings, determine if the memory of the mechanism contains stringt that consists of the same number of characters ass and differs from s in exactly one position".
Watto has already compiled the mechanism, all that's left is to write a program for it and check it on the data consisting ofn initial lines and m queries. He decided to entrust this job to you.
InputThe first line contains two non-negative numbers n andm (0 ≤ n ≤ 3·105,0 ≤ m ≤ 3·105) — the number of the initial strings and the number of queries, respectively.
Next follow n non-empty strings that are uploaded to the memory of the mechanism.
Next follow m non-empty strings that are the queries to the mechanism.
The total length of lines in the input doesn't exceed 6·105. Each line consistsonly of letters 'a', 'b', 'c'.
OutputFor each query print on a single line "YES" (without the quotes), if the memory of the mechanism contains the required string, otherwise print "NO" (without the quotes).
ExamplesInput2 3Output
aaaaa
acacaca
aabaa
ccacacc
caaac
YES
NO
NO
题目大意:
给你N个原串,以及M个查询串。
每个查询串询问的是,原串中是否有一个字符串,通过改变一个字母就能得到这个字符串(要求其他位子的字符都要相等)。
思路:
1、首先字典树建树,因为只有3种字母,而且输入的总长度也并不大,所以256M的内存是肯定够用的,这里大可不必担心。
2、建好树之后窝一开始只会暴力啊。暴力改变每个查询串每个位子上的字符,然后查询,显然时间复杂度达到了O(M*(2len)^2);那么考虑能否通过剪枝来优化。
剪枝优化是的确存在的,然而我们不能很简单的找到剪枝点。
那么考虑Dfs。
对于不能继续查询的部分(p==NULL)进行剪枝。
细节处理有很多。大家注意一点就好。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
using namespace std;
#define maxn 3
typedef struct tree
{
tree *nex[maxn];
int v;
int val;
}tree;
tree root;
void init()
{
for(int i=0;i<maxn;i++)
{
root.nex[i]=NULL;
}
}
void creat(char *str,int va)
{
int len=strlen(str);
tree *p=&root,*q;
for(int i=0;i<len;i++)
{
int id=str[i]-'a';
if(p->nex[id]==NULL)
{
q=(tree *)malloc(sizeof(root));
for(int j=0;j<3;j++)
{
q->nex[j]=NULL;
}
p->nex[id]=q;
}
p=p->nex[id];
if(i==len-1)
{
p->val=va;
}
}
}
char a[600600];
int find(int i,int flag,tree *p,int lenn)
{
if(p==NULL)return 0;
int id=a[i]-'a';
tree *pre=p;
p=pre->nex[id];
if(i==lenn-1)
{
if(p!=NULL&&flag==1&&p->val==1)
return 1;
else if(flag==0)
{
p=pre->nex[(id+1)%3];
if(p!=NULL&&p->val==1)return 1;
p=pre->nex[(id+2)%3];
if(p!=NULL&&p->val==1)return 1;
}
return 0;
}
int tmp=0;
if(p!=NULL)if(find(i+1,flag,p,lenn)==1)tmp=1;
if(flag==0)
{
p=pre->nex[(id+1)%3];
if(p!=NULL)if(find(i+1,1,p,lenn)==1)tmp=1;
p=pre->nex[(id+2)%3];
if(p!=NULL)if(find(i+1,1,p,lenn)==1)tmp=1;
}
return tmp;
}
int n,m;
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0;i<n;i++)
{
scanf("%s",a);
creat(a,1);
}
while(m--)
{
int flag=0;
scanf("%s",a);
tree *p=&root;
if(find(0,0,p,strlen(a))==1)printf("YES\n");
else printf("NO\n");
}
}
}