hdu 3416 Marriage Match IV (最短路+最大流)

时间:2022-12-29 21:18:12

hdu 3416 Marriage Match IV

Description

Do not sincere non-interference。

Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it’s said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.

So, under a good RP, starvae may have many chances to get to city B. But he don’t know how many chances at most he can make a data with the girl he likes . Could you help starvae?

Input

The first line is an integer T indicating the case number.(1<=T<=65)

For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0

题目大意:有n个城市m条路,从城市A到城市B的最短路径有几条。

解题思路:先正向反向求最短路,获得起点到每点的最短距离d1[]。 终点到每点的最短距离d2[],最短路Min。然后遍历每一条边。当d1[edges.from]+edges.dis+d2[edges.to]==Min时。将该边增加最大流的图中,容量为1,建完图后,以A为源点,B为汇点跑最大流就可以。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue> using namespace std; const int INF = 0x3f3f3f3f;
const int N = 2005;
const int M = 200005;
typedef long long ll;
int n, m, s, t, Min; struct Edge{
int from,to;
ll dist;
};
struct HeapNode{
int d,u;
bool operator < (const HeapNode& rhs) const{
return d > rhs.d;
}
}; struct Dinic{
int ec, head[N], first[N], que[N], lev[N];
int Next[M], to[M], v[M]; void init() {
ec = 0;
memset(first, -1, sizeof(first));
} void addEdge(int a,int b,int c) {
to[ec] = b;
v[ec] = c;
Next[ec] = first[a];
first[a] = ec++; to[ec] = a;
v[ec] = 0;
Next[ec] = first[b];
first[b] = ec++;
} int BFS() {
int kid, now, f = 0, r = 1, i;
memset(lev, 0, sizeof(lev));
que[0] = s, lev[s] = 1;
while (f < r) {
now = que[f++];
for (i = first[now]; i != -1; i = Next[i]) {
kid = to[i];
if (!lev[kid] && v[i]) {
lev[kid] = lev[now] + 1;
if (kid == t) return 1;
que[r++] = kid;
}
}
}
return 0;
} int DFS(int now, int sum) {
int kid, flow, rt = 0;
if (now == t) return sum;
for (int i = head[now]; i != -1 && rt < sum; i = Next[i]) {
head[now] = i;
kid = to[i];
if (lev[kid] == lev[now] + 1 && v[i]) {
flow = DFS(kid, min(sum - rt, v[i]));
if (flow) {
v[i] -= flow;
v[i^1] += flow;
rt += flow;
} else lev[kid] = -1;
}
}
return rt;
} int dinic() {
int ans = 0;
while (BFS()) {
for (int i = 0; i <= n; i++) {
head[i] = first[i];
}
ans += DFS(s, INF);
}
return ans;
}
}din; struct Dijkstra{
int n,m; //点数和边数
vector<Edge> edges; //边列表
vector<int> G[M]; //每一个结点出发的边编号(从0開始编号)
bool done[N]; //是否已永久标号
int d[N]; //s到各个点的距离
ll L; void init(int n) {
this->n = n;
for(int i = 0; i <= m * 2; i++) G[i].clear();//清空邻接表
edges.clear();//清空边表
} void addEdge(int from, int to, ll dist) {
//假设是无向图。每条无向边需调用两次AddEdge
edges.push_back((Edge){from, to, dist});
m = edges.size();
G[from].push_back(m - 1);
} void dijkstra(int s) {//求s到全部点的距离
priority_queue<HeapNode> Q;
for(int i = 0; i <= n; i++) d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode){0, s});
while(!Q.empty()){
HeapNode x = Q.top(); Q.pop();
int u = x.u;
if(done[u]) continue;
done[u] = true;
for(int i = 0; i < G[u].size(); i++){
Edge& e = edges[G[u][i]];
if(d[e.to] > d[u] + e.dist){
d[e.to] = d[u] + e.dist;
Q.push((HeapNode){d[e.to], e.to});
}
}
}
} }dij, dij2; void input() {
int u, v, d;
scanf("%d %d", &n, &m);
dij.init(n);
dij2.init(n);
for (int i = 0; i < m; i++) {
scanf("%d %d %d", &u, &v, &d);
dij.addEdge(u, v, d);
dij2.addEdge(v, u, d);
}
scanf("%d %d", &s, &t);
dij.dijkstra(s);
dij2.dijkstra(t);
Min = dij.d[t];
} void solve() {
din.init();
for (int i = 0; i < m; i++) {
if (dij.d[dij.edges[i].from] + dij2.d[dij.edges[i].to] + dij.edges[i].dist == Min) {
din.addEdge(dij.edges[i].from, dij.edges[i].to, 1);
}
}
printf("%d\n", din.dinic());
} int main() {
int T;
scanf("%d", &T);
while (T--) {
input();
solve();
}
return 0;
}

hdu 3416 Marriage Match IV (最短路+最大流)的更多相关文章

  1. HDU 3416 Marriage Match IV &lpar;最短路建图&plus;最大流)

    (点击此处查看原题) 题目分析 题意:给出一个有n个结点,m条单向边的有向图,问从源点s到汇点t的不重合的最短路有多少条,所谓不重复,意思是任意两条最短路径都不共用一条边,而且任意两点之间的边只会用一 ...

  2. HDU 3416 Marriage Match IV (Dijkstra&plus;最大流)

    题意:N个点M条边的有向图,给定起点S和终点T,求每条边都不重复的S-->T的最短路有多少条. 分析:首先第一步需要找出所有可能最短路上的边.怎么高效地求出呢?可以这样:先对起点S,跑出最短路: ...

  3. HDU 3416 Marriage Match IV (最短路径&amp&semi;&amp&semi;最大流)

    /*题意: 有 n 个城市,知道了起点和终点,有 m 条有向边,问从起点到终点的最短路一共有多少条.这是一个有向图,建边的时候要注意!!解题思路:这题的关键就是找到哪些边可以构成最短路,其实之前做最短 ...

  4. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  5. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  6. HDU 3416 Marriage Match IV

    最短路+最大流 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...

  7. HDU 3416 Marriage Match IV 【最短路】&lpar;记录路径&rpar;&plus;【最大流】

    <题目链接> 题目大意: 给你一张图,问你其中没有边重合的最短路径有多少条. 解题分析: 建图的时候记得存一下链式后向边,方便寻找最短路径,然后用Dijkstra或者SPFA跑一遍最短路, ...

  8. HDU 3416 Marriage Match IV(ISAP&plus;最短路)题解

    题意:从A走到B,有最短路,问这样不重复的最短路有几条 思路:先来讲选有效边,我们从start和end各跑一次最短路,得到dis1和dis2数组,如果dis1[u] + dis2[v] + cost[ ...

  9. HDU 3416 Marriage Match IV(最短路,网络流)

    题面 Do not sincere non-interference. Like that show, now starvae also take part in a show, but it tak ...

随机推荐

  1. Notes of the scrum meeting&lpar;10&sol;31&rpar;

    meeting time:3:00~4:30p.m.,October 30th,2013 meeting place:绿园 attendees: 顾育豪                        ...

  2. C&num;的CLR组成和运转介绍

    原文 clr基本 CLR(Common Language Runtime)是一个可由多种编程语言使用的“运行时”.(例如:c#,c++/cli,vb,f#,ironpython,ironruby,il ...

  3. hadoop搭建杂记:Linux下不同linux主机之间文件copy的scp命令

    不同的Linux之间copy文件常用有3种方法: 不同的Linux之间copy文件常用有3种方法: ①ftp 就是其中一台Linux安装ftp Server,这样可以另外一台使用ftp的程序来进行文件 ...

  4. Mybatis:resultMap的使用总结

    resultMap是Mybatis最强大的元素,它可以将查询到的复杂数据(比如查询到几个表中数据)映射到一个结果集当中. resultMap包含的元素: <!--column不做限制,可以为任意 ...

  5. 2018(2017)美图java服务端笔试(回忆录)

    选择题有几道,是比较基础的 填空题两道:一道是类似c语言的给出abc的值求 ++a+b+++c++  ,另一道是说出两个常见的垃圾回收算法 编程题 找出出现次数为1的数字然后改进(要求O(n)) 数据 ...

  6. 55 Django静态文件配置

    一.Django静态文件配置 1.项目文件夹,新建一个文件夹statics 文件夹 2.在配置文件settings.py中,配置: 文件中有第句: STATIC_URL = '/static/'#静态 ...

  7. OPTAUTH 两步验证详解

    先贴图: 在对外网开放的后台管理系统中,使用静态口令进行身份验证可能会存在如下问题: (1) 为了便于记忆,用户多选择有特征作为密码,所有静态口令相比动态口令而言,容易被猜测和破解: (2) 黑客可以 ...

  8. eclipse &plus; maven 环境配置

    软件152 余建强 第一步:准备以下软件并进行安装 1. jdk1.7或者以上为最佳: 官方下载地址:http://www.oracle.com/technetwork/java/javase/dow ...

  9. 【学习笔记】--- 老男孩学Python,day13 生成器&comma;生成器函数&comma;各种推倒式和生成器表达式

    1. 生成器和生成器函数 生成器的本质就是迭代器 生成器的三种创建办法: 1.通过生成器函数 2.通过生成器表达式创建生成器 3.通过数据转换   2. 生成器函数: 函数中包含了yield的就是生成 ...

  10. k8s滚动升级

    为了服务升级过程中提供可持续的不中断的服务,Kubernetes 提供了rolling update机制,具体配置需要修改对应服务的yaml文件 参数解析: minReadySeconds: 100 ...