I m a little new to python. I have a function named featureExtraction which returns a 1-D array for an image. I need to stack all such 1-d arrays row wise to form a 2-d array. I have the following equivalent code in MATLAB.
我对python有点新意。我有一个名为featureExtraction的函数,它返回一个图像的一维数组。我需要逐行堆叠所有这样的1-d数组以形成2-d数组。我在MATLAB中有以下等效代码。
I1=imresize(I,[256 256]);
Features(k,:) = featureextraction(I1);
featureextraction returns a 1-d row vector which is stacked row-wise to form a 2-d array. What is the equivalent code snippet in python?
featureextraction返回1-d行向量,该向量逐行堆叠以形成2-d数组。 python中的等效代码片段是什么?
Thank You in advance.
先谢谢你。
2 个解决方案
#1
6
Not sure what you're looking for, but maybe vstack
or column_stack
?
不确定你在寻找什么,但也许是vstack或column_stack?
>>> np.vstack((a,a,a))
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
>>> np.column_stack((a,a,a))
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7],
[8, 8, 8],
[9, 9, 9]])
Or even just np.array
:
甚至只是np.array:
>>> np.array([a,a,a])
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
#2
4
You can use numpy.vstack()
:
你可以使用numpy.vstack():
a = np.array([1,2,3])
np.vstack((a,a,a))
#array([[1, 2, 3],
# [1, 2, 3],
# [1, 2, 3]])
#1
6
Not sure what you're looking for, but maybe vstack
or column_stack
?
不确定你在寻找什么,但也许是vstack或column_stack?
>>> np.vstack((a,a,a))
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
>>> np.column_stack((a,a,a))
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7],
[8, 8, 8],
[9, 9, 9]])
Or even just np.array
:
甚至只是np.array:
>>> np.array([a,a,a])
array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])
#2
4
You can use numpy.vstack()
:
你可以使用numpy.vstack():
a = np.array([1,2,3])
np.vstack((a,a,a))
#array([[1, 2, 3],
# [1, 2, 3],
# [1, 2, 3]])