Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example:
Input: [1,8,6,2,5,4,8,3,7] Output: 49
题目给出[a1,a2...ai],要求找出一个ai,aj是的min(ai,aj)*(j-i)最大。
有两种方法:
(1)暴力法
两层循环从左到右遍历,算出每一组的面积大小
public class Solution { public int maxArea(int[] height) { int maxarea = 0; for (int i = 0; i < height.length; i++) for (int j = i + 1; j < height.length; j++) maxarea = Math.max(maxarea, Math.min(height[i], height[j]) * (j - i)); return maxarea; } }
两层循环,复杂度自然是O(n^2)
(2)双指针法
现在假设[a1,a2......an],现在我们算出s=min(a1,an)*(n-1),1和n是长度的边界,剩下的任意高度组合的长度都不能比n-1大,长度如果变成了n-2,
之前算出的面积s如果不想变小,min(ai,aj)就必须比min(a1,an)大。总结一下就是,随着长度的缩小,面积要想变大就必须扩大高度,所以比原先高度低的我们就
不需要再考虑了。
public class Solution { public int maxArea(int[] height) { int maxarea = 0, l = 0, r = height.length - 1; while (l < r) { maxarea = Math.max(maxarea, Math.min(height[l], height[r]) * (r - l)); if (height[l] < height[r]) l++; else r--; } return maxarea; } }
一次遍历就能解决,时间复杂度O(n)