Java虚拟机:Java内存区域

时间:2022-12-27 12:48:08

动机

最近一段时间细读了周志明的《深入理解Java虚拟机》,加上近期自己要在组内进行知识分享,于是打算把分享的主题就定为JVM方面的,在制作PPT的过程,反复把此书翻了不少遍,于是想着顺便整理出一份笔记供大家学习。由于自己的水平有限加上为了保证内容的准确性,因此文章大部分内容取自此书的原内容,少部分内容为从知乎R大和其他对JVM有深入理解的人学习而来。

文章地址:http://blog.csdn.net/v123411739/article/details/78937660


1.运行时数据区

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户线程的启动和结束而建立和销毁。根据《Java虚拟机规范(Java SE 7版)》的规定,Java虚拟机所管理的内存将会包括以下几个运行时数据区域,如图所示。

Java虚拟机:Java内存区域


程序计数器(Program Counter Register):一块较小的内存空间,可以看作当前线程所执行的字节码的行号指示器。如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Native方法,这个计数器值则为空。此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。


Java虚拟机栈(Java Virtual Machine Stacks):与程序计算器一样,Java虚拟机栈也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法在执行的同时都会创建一个栈帧用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法从调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中入栈到出栈的过程。

局部变量表存放了编译期可知的各种基本数据类型、对象引用(reference类型,它不等同于对象本身,可能是一个指向对象起始地址的引用指针,也可能是指向一个代表对象的句柄或其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。

其中64位长度的long和double类型的数据会占用2个局部变量空间(Slot),其余的数据类型只占用1个。局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

在Java虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出*Error异常;如果虚拟机栈可以动态扩展,如果扩展时无法申请到足够的内存,就会抛出OutOfMemoryError异常。


本地方法栈(Native Method Stack):本地方法栈与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的Native方法服务。与虚拟机栈一样,本地方法栈区域也会抛出*Error和OutOfMemoryError异常。


Java堆(Java Heap):对大多数应用来说,Java堆是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。

Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以Java堆中还可以细分为:新生代和老年代;再细致一点的有Eden空间、From Survivor空间、To Survivor空间等。从内存分配的角度来看,线程共享的Java堆中可能划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB)。不过无论如何划分,都与存放内容无关,无论哪个区域,存储的都仍然是对象实例,进一步划分的目的是为了更好地回收内存,或者更快地分配内存。

根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。


方法区(Method Area):与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。方法区是JVM规范中定义的一个概念,具体放在哪里,不同的实现可以放在不同的地方。

对于习惯在HotSpot虚拟机上开发、部署程序的开发者来说,很多人都更愿意把方法区称为“永久代”,本质上两者并不等价,仅仅是因为HotSpot虚拟机的设计团队选择把GC分代收集扩展至方法区,或者说使用永久代来实现方法区而已,这样HotSpot的垃圾收集器可以像管理Java堆一样管理这部分内存,能够省去专门为方法区编写内存管理代码的工作。对于其他虚拟机(如BEA JRockit、IBM J9等)来说是不存在永久代的概念的。原则上,如何实现方法区属于虚拟机实现细节,不受虚拟机规范约束,但使用永久代来实现方法区,现在看来并不是一个好主意,因为这样更容易遇到内存溢出问题(永久代有-XX:MaxPermSize的上限,J9和JRockit只要没有触碰到进程可用内存的上限,例如32位系统中的4GB,就不会出现问题),而且有极少数方法(例如String.intern())会因这个原因导致不同虚拟机下有不同的表现。因此,HotSpot虚拟机在JDK1.8放弃永久代并改为采用Native Memory来实现方法区(详情见下文永久代的移除)。

根据Java虚拟机规范的规定,当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。


运行时常量池(Runtime Constant Pool):运行时常量池是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池,用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。

一般来说,除了保存Class文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。


永久代的移除:

在Java 6中:方法区中包含的数据,除了JIT(Just In Time)编译生成的代码存放在native memory的CodeCache区域,其他都存放在永久代。

在Java 7中:符号引用(Symbolic References)转移到了native memory;字面量(Literal)转移到了java heap;类的静态变量(class statics)转移到了java heap。

在Java 8中:永久代被彻底移除,取而代之的是另一块与堆不相连的本地内存——元空间(Metaspace),‑XX:MaxPermSize 参数失去了意义,取而代之的是-XX:MaxMetaspaceSize。

移除永久代的主要原因:

  1. 为了HotSpot与JRockit的融合。HotSpot所属于Sun公司,JRockit所属于BEA公司,两者分别与2008和2009年被Oracle收购,Oracle选择将两个优秀的虚拟机融合到一起,主要应该是以HotSpot为主,这个融合在JDK1.8完成。
  2. 永久代大小不容易确定,PermSize指定太小容易造成永久代OOM。

Metaspace(元空间):

  1. 元空间的本质和永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存(native memory)。
  2. 元空间主要用来储存类的元数据,元数据包括类、字段、方法定义及其他信息。类和它的元数据的生命周期是和它的类加载器的生命周期一致的。也就是说,只要类的类加载器是存活的,在Metaspace中的类元数据也是存活的,不能被释放。


2. HotSpot虚拟机对象探秘


对象的创建

Java是一门面向对象的编程语言,在Java程序运行过程中无时无刻都有对象被创建出来。在语言层面上,创建对象(例如克隆、反序列化)通常仅仅是一个new关键字而已,而在虚拟机中,对象(文中讨论的对象限于普通Java对象,不包括数组和Class对象等)的创建又是怎样一个过程呢?

 虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。假设Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump the Pointer)。如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(Free List)。选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。因此,在使用Serial、ParNew等带Compact过程的收集器时,系统采用的分配算法是指针碰撞,而使用CMS这种基于Mark-Sweep算法的收集器时,通常采用空闲列表。

除如何划分可用空间之外,还有另外一个需要考虑的问题是对象创建在虚拟机中是非常频繁的行为,即使是仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。解决这个问题有两种方案,一种是对分配内存空间的动作进行同步处理——实际上虚拟机采用CAS配上失败重试的方式保证更新操作的原子性;另一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)。哪个线程要分配内存,就在哪个线程的TLAB上分配,只有TLAB用完并分配新的TLAB时,才需要同步锁定。虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),如果使用TLAB,这一工作过程也可以提前至TLAB分配时进行。这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。

接下来,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前的运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。关于对象头的具体内容,稍后再做详细介绍。

在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了,但从Java程序的视角来看,对象创建才刚刚开始——<init>方法还没有执行,所有的字段都还为零。所以,一般来说(由字节码中是否跟随invokespecial指令所决定),执行new指令之后会接着执行<init>方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全产生出来。

 

对象的内存布局

在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32bit和64bit,官方称它为“Mark Word”。对象需要存储的运行时数据很多,其实已经超出了32位、64位Bitmap结构所能记录的限度,但是对象头信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间。例如,在32位的HotSpot虚拟机中,如果对象处于未被锁定的状态下,那么Mark Word的32bit空间中的25bit用于存储对象哈希码,4bit用于存储对象分代年龄,2bit用于存储锁标志位,1bit固定为0,而在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)下对象的存储内容见表2-1。

 Java虚拟机:Java内存区域

对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身。另外,如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中却无法确定数组的大小。

接下来的实例数据部分是对象真正存储的有效信息,也是在程序代码中所定义的各种类型的字段内容。无论是从父类继承下来的,还是在子类中定义的,都需要记录起来。这部分的存储顺序会受到虚拟机分配策略参数(FieldsAllocationStyle)和字段在Java源码中定义顺序的影响。HotSpot虚拟机默认的分配策略为longs/doubles、ints、shorts/chars、bytes/booleans、oops(Ordinary Object Pointers),从分配策略中可以看出,相同宽度的字段总是被分配到一起。在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。如果CompactFields参数值为true(默认为true),那么子类之中较窄的变量也可能会插入到父类变量的空隙之中。

第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说,就是对象的大小必须是8字节的整数倍。而对象头部分正好是8字节的倍数(1倍或者2倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。


对象的访问定位

建立对象是为了使用对象,我们的Java程序需要通过栈上的reference数据来操作堆上的具体对象。由于reference类型在Java虚拟机规范中只规定了一个指向对象的引用,并没有定义这个引用应该通过何种方式去定位、访问堆中的对象的具体位置,所以对象访问方式也是取决于虚拟机实现而定的。目前主流的访问方式有使用句柄和直接指针两种。

如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息,如图2-2所示。

 Java虚拟机:Java内存区域

2-2   通过句柄访问对象

 

如果使用直接指针访问,那么Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而reference中存储的直接就是对象地址,如图2-3所示。

 Java虚拟机:Java内存区域

2-3   通过直接指针访问对象

这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。

使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。就本书讨论的主要虚拟机Sun HotSpot而言,它是使用第二种方式进行对象访问的,但从整个软件开发的范围来看,各种语言和框架使用句柄来访问的情况也十分常见。


参考:
《深入理解Java虚拟机》-周志明