转载自:https://my.oschina.net/u/1859679/blog/1525343
参考:深入理解Java虚拟机:JVM高级特性与最佳实践(最新第二版 文字版)
Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。
1.硬件的内存模型
物理机并发处理的方案对于jvm的内存模型实现,也有很大的参考作用,毕竟jvm也是在硬件层上来做事情,底层架构也决定了上层的建筑建模方式。
计算机并发并非只是多个处理器都参与进来计算就可以了,会牵扯到一些列硬件的问题,最直接的就是要和内存做交互。但计算机的存储设备与处理器的预算速度相差太大,完全不能满足处理器的处理速度,怎么办,这就是后续加入的一层读写速度接近处理器运算速度的高速缓存来作为处理器和内存之间的缓冲。
高速缓存一边把使用的数据,从内存复制搬入,方便处理器快速运算,一边把运算后的数据,再同步到主内存中,如此处理器就无需等待了。
高速缓存虽然解决了处理器和内存的矛盾,但也为计算机带来了另一个问题:缓存一致性。特别是当多个处理器都涉及到同一块主内存区域的时候,将可能会导致各自的缓存数据不一致。
那么出现不一致情况的时候,以谁的为准?
为了解决这个问题,处理器和内存之间的读写的时候需要遵循一定的协议来操作,这类协议有:MSI、MESI、MOSI、Synapse、Firefly 以及 Dragon Protocol等。这就是上图中处理器、高速缓存、以及内存之间的处理方式。
另外除了高速缓存之外,为了充分利用处理器,处理器还会把输入的指令码进行乱序执行优化,只要保证输出一致,输入的信息可以乱序执行重组,所以程序中的语句计算顺序和输入代码的顺序并非一致。
JVM内存模型
上面我们了解了硬件的内存模型,以此为借鉴,我们看看jvm的内存模型。
Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽掉各
种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访
问效果。这点和c和c++并不一样,C和C++会直接使用物理硬件和操作系统的内存模型来处理,所以在各个平台上会有差异,这一点java不会。
主内存与工作内存
Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。 此处的变(Variables)与Java编程中所说的变量有所区别,它包括了实例字段、 静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。
为了获得较好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器进行调整代码执行顺序这类优化措施。
Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时的主内存名字一样,两者也可以互相类比,但此处仅是虚拟机内存的一部分)。 每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、 赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、 主内存、 工作内存三者的交互关系如上图。
这里所讲的主内存、 工作内存与Java内存区域中的Java堆、 栈、 方法区等并不是同一个层次的内存划分,这两者基本上是没有关系的,一个是内存区域,一个是内存模型。如果两者一定要勉强对应起来,那从变量、 主内存、 工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分,而工作内存则对应于虚拟机栈中的部分区域。 从更低层次上说,主内存就直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(甚至是硬件系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问读写的是工作内存。
java的内存模型规定了所有的变量都存储在主内存中,每个线程拥有自己的工作内存,工作内存保存了该线程使用到的变量的主内存拷贝,线程对变量所有操作,读取,赋值,都必须在工作内存中进行,不能直接写主内存变量,线程间变量值的传递均需要主内存来完成。
内存交互
一个变量如何从主内存拷贝到工作内存,然后发生改变又从工作内存同步到主内存的,jvm定义了8中操作来完成,并保证每一种操作都是原子的。我们来看看有那些操作。
上图就是一个变量从主内存到工作内存,经过使用和赋值之后,又同步到主内存之中。
读取:
1、read:读取主内存的变量,传送到工作内存中。
2、load: 把刚读取的变量,放入到工作内存的变量副本中。
修改:
3、use:把工作内存变量的值传递给执行引擎
4、assign: 把执行引擎收到的值赋值给工作内存的变量
写入:
5、store:把工作内存的变量传送会主内存中
6、write:把刚store的变量放入到主内存中
锁定:
除了以上三种分类,还有锁定操作,用来处理线程独占状态。
lock:把主内存的一个变量锁定。
unlock: 把主内存内,lock的变量释放解锁,释放后可以被其他线程访问。
如果把变量从主变量复制到工作内存中,就要顺序的执行read和load操作,如果要把变量从工作内存同步回主内存,就要顺序的执行strore和write操作,不允许read和load、store和write操作之一单独出现,也不允许一个线程丢弃assign操作,也就是改变后必须同步到主内存中。
另外还有有些其他的规则,比如变量不允许在工作线程中诞生,只可以在主内存中诞生,所以方法内的局部变量也是在主内存中初始化的,并非在工作线程中诞生。如此的多的规则,要记住不容易,下面讲到的happen-before会将这些规则整合一起,相信看完happen-before之后,会加深理解。
特征
变量从诞生到赋值再回写,这么简单的一个过程要分解为8个操作,目的是为了让内存在高速读取的同时,也能保持数据的一致性。
jvm内存模型是围绕着并发过程中如何处理原子性、可见性和有序性来建立的,我们看下这三个特征。
原子性(Atomicity):
由Java内存模型来直接保证的原子性变量操作包括read、 load、assign、 use、 store和write,我们大致可以认为基本数据类型的访问读写是具备原子性的(例外就是long和double的非原子性协定,读者只要知道这件事情就可以了,无须太过在意这些几乎不会发生的例外情况)。如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。
可见性(Visibility):
可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。 Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。 因此,可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。除了volatile之外,Java还有两个关键字能实现可见性,即synchronized和final。 同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的,而final关键字的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见final字段的值。
有序性(Ordering):
面有讲过,处理器为了加快处理速度,会把执行顺序打乱,只保证结果一致,而不保证顺序一致。这就是指令的重排序。
具体的编译器实现可以产生任意它喜欢的代码 -- 只要所有执行这些代码产生的结果,能够和内存模型预测的结果保持一致。这为编译器实现者提供了很大的*,包括操作的重排序。
jvm对定义了volatile和synchronize的关键变量,可以保证操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。比如禁止指令重排序,保证线程之间的操作有序,让一个变量在同一时刻只能有个线程对其lock操作。
happens-before
前面铺垫了这么多的基础知识,一直没有讲到jvm究竟是如何并发期间,保证对定义有synchronize和volatile变量的一致性?
happen-before,是判断数据是否存在竞争、线程是否安全的主要依据,依靠这个原则,我们可以一揽子解决并发环境下两个操作是否可能存在冲突的所有问题。
我们先看规则:
- 程序次序法则:如果在程序中,所有动作 A 出现在动作 B 之前,则线程中的每动作 A 都 happens-before 于该线程中的每一个动作 B。
- 监视器锁法则:对一个监视器的解锁 happens-before 于每个后续对同一监视器的加锁。
- Volatile 变量法则:对 Volatile 域的写入操作 happens-before 于每个后续对同一 Volatile 的读操作。
- 传递性:如果 A happens-before 于 B,且 B happens-before C,则 A happens-before C。
- 线程启动规则: thread对象的start()方法线性发生与此线程每个动作。
- 线程终止规则:线程中的所有操作都线性发生对此线程的终止检测。
- 线程中断规则:对线程interrupt()方法的调用先行发生与被中断线程的代码检测。
- 对象终结规则:一个对象的初始化完成线性发生于finalize()。
目前我们只关注前4个就可以了,后续的用到了再聊。volatile我们这次还是先不聊,我们总结一下1、2、4,很明显是讲一个对一个同步块内的逻辑进行串行化操作,看下示例
int count = 0;
public synchronized void increCount() {
count++;
}
上例子中我们对increCount方法进行了同步处理,那么比如我们有线程A、B、C同时调用这个方法会怎样处理?
从上图中我们可以看到,对于increCount来说,多个线程对其调用在jvm这里是线性串行执行的,A中线程的监视器是this(当前对象),A中的监视器的解锁 happens-before 与B线程的,如果同步中有两个方法 a,b那么ab的顺序也是确认的。
所以说,时间先后顺序与happens-before 原则没有太大关系,我们衡量并非安全问题4的时候一切可以依据线性发生原则为准。