lightgbm的sklearn接口和原生接口参数详细说明及调参指点

时间:2022-12-23 20:28:06
class lightgbm.LGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=200000, objective=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=1, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=-1, silent=True, **kwargs)

boosting_type
default="gbdt"

"gbdt":Gradient Boosting Decision Tree

"dart":Dropouts meet Multiple Additive Regression Trees

"goss":Gradient-based One-Side Sampling

"rf": Random Forest

 
num_leaves  (intoptional (default=31)) 每个基学习器的最大叶子节点 <=2^max_depth
max_depth  (intoptional (default=-1)) 每个基学习器的最大深度, -1 means no limit 当模型过拟合,首先降低max_depth 
learning_rate (floatoptional (default=0.1))  Boosting learning rate  
n_estimators (intoptional (default=10))   基学习器的数量  
max_bin  (intoptional (default=255)) feature将存入的bin的最大数量,应该是直方图的k值  
subsample_for_bin  (intoptional (default=50000)) Number of samples for constructing bins  
objective  (stringcallable or Noneoptional (default=None))

default:

‘regression’ for LGBMRegressor,

‘binary’ or ‘multiclass’ for LGBMClassifier,

‘lambdarank’ for LGBMRanker.

 
min_split_gain  (floatoptional (default=0.)) 树的叶子节点上进行进一步划分所需的最小损失减少  
min_child_weight   (floatoptional (default=1e-3))
Minimum sum of instance weight(hessian) needed in a child(leaf)

 
min_child_samples 
(intoptional (default=20) 叶子节点具有的最小记录数  
subsample 
(floatoptional (default=1.) 训练时采样一定比例的数据  
subsample_freq  (intoptional (default=1)) Frequence of subsample, <=0 means no enable  
colsample_bytree 
(floatoptional (default=1.) Subsample ratio of columns when constructing each tree  
reg_alpha
(floatoptional (default=0.))  L1 regularization term on weights  

reg_lambda

(floatoptional (default=0.)) L2 regularization term on weights  

random_state

(int or Noneoptional (default=None)    
silent (booloptional (default=True))    
n_jobs  (intoptional (default=-1))    

          




######################################################################################################

下表对应了Faster Spread,better accuracy,over-fitting三种目的时,可以调整的参数:

lightgbm的sklearn接口和原生接口参数详细说明及调参指点

########################################################################################### 

类的属性:

n_features_ int  特征的数量
classes_ rray of shape = [n_classes]  类标签数组(只针对分类问题)
n_classes_ int  类别数量   (只针对分类问题)
best_score_ dict or None  最佳拟合模型得分
best_iteration_ int or None  如果已经指定了early_stopping_rounds,则拟合模型的最佳迭代次数
objective_ string or callable  拟合模型时的具体目标
booster_ Booster 这个模型的Booster
evals_result_ dict or None  如果已经指定了early_stopping_rounds,则评估结果
feature_importances_ array of shape = [n_features] 特征的重要性

###########################################################################################

类的方法: 

fit(X, y, sample_weight=None, init_score=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_init_score=None, eval_metric='logloss', early_stopping_rounds=None, verbose=True, feature_name='auto', categorical_feature='auto', callbacks=None)
X array-like or sparse matrix of shape = [n_samplesn_features] 特征矩阵
y array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression)
sample_weight  array-like of shape = [n_samples] or Noneoptional (default=None)) 样本权重,可以采用np.where设置
init_score array-like of shape = [n_samples] or Noneoptional (default=None)) Init score of training data
group array-like of shape = [n_samples] or Noneoptional (default=None) Group data of training data.
eval_set  list or Noneoptional (default=None)  A list of (X, y) tuple pairs to use as a validation sets for early-stopping
eval_names  list of strings or Noneoptional (default=None) Names of eval_set
eval_sample_weight  list of arrays or Noneoptional (default=None) Weights of eval data
eval_init_score  list of arrays or Noneoptional (default=None)  Init score of eval data
eval_group list of arrays or Noneoptional (default=None)  Group data of eval data
eval_metric stringlist of stringscallable or Noneoptional (default="logloss")  "mae","mse",...
early_stopping_rounds int or Noneoptional (default=None)  一定rounds,即停止迭代
verbose  booloptional (default=True)  
feature_name  list of strings or 'auto'optional (default="auto") If ‘auto’ and data is pandas DataFrame, data columns names are used
categorical_feature  list of strings or int, or 'auto'optional (default="auto") If ‘auto’ and data is pandas DataFrame, pandas categorical columns are used
callbacks list of callback functions or Noneoptional (default=None)  




###############################################################################################
 predict_proba(X, raw_score=False, num_iteration=0)
X  array-like or sparse matrix of shape = [n_samplesn_features] Input features matrix
raw_score booloptional (default=False) Whether to predict raw scores
num_iteration intoptional (default=0)  Limit number of iterations in the prediction; defaults to 0 (use all trees).
Returns predicted_probability  The predicted probability for each class for each sample.
Return type array-like of shape = [n_samples, n_classes]  

不平衡处理的参数:

1.一个简单的方法是设置is_unbalance参数为True或者设置scale_pos_weight,二者只能选一个。 设置is_unbalance参数为True时会把负样本的权重设为:正样本数/负样本数。这个参数只能用于二分类。

2.自定义评价函数:

https://cloud.tencent.com/developer/article/1357671

lightGBM的原理总结:

http://www.cnblogs.com/gczr/p/9024730.html

论文翻译:https://blog.csdn.net/u010242233/article/details/79769950https://zhuanlan.zhihu.com/p/42939089

处理分类变量的原理:https://blog.csdn.net/anshuai_aw1/article/details/83275299

CatBoost、LightGBM、XGBoost的对比

https://blog.csdn.net/LrS62520kV/article/details/79620615

 



lightgbm的sklearn接口和原生接口参数详细说明及调参指点的更多相关文章

  1. xgboost的sklearn接口和原生接口参数详细说明及调参指点

    from xgboost import XGBClassifier XGBClassifier(max_depth=3,learning_rate=0.1,n_estimators=100,silen ...

  2. word2vec参数调整 及lda调参

     一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...

  3. DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化

    DeepMind提出新型超参数最优化方法:性能超越手动调参和贝叶斯优化 2017年11月29日 06:40:37 机器之心V 阅读数 2183   版权声明:本文为博主原创文章,遵循CC 4.0 BY ...

  4. android 学习随笔二十七(JNI:Java Native Interface&comma;JAVA原生接口 )

    JNI(Java Native Interface,JAVA原生接口) 使用JNI可以使Java代码和其他语言写的代码(如C/C++代码)进行交互. 问:为什么要进行交互? 首先,Java语言提供的类 ...

  5. 接口作为方法的参数或返回值——List接口

    接口作为方法的参数或返回值,源码可知,List为一个接口,ArraryList是的它的实现类: 其中,addNames方法中,入参和返回值都List接口,入参是多态的,编译看左,运行看右(访问成员方法 ...

  6. 编写高质量代码改善C&num;程序的157个建议——建议43:让接口中的泛型参数支持协变

    建议43:让接口中的泛型参数支持协变 除了上一建议中提到的使用泛型参数兼容接口不可变性外,还有一种办法是为接口中的泛型声明加上out关键字来支持协变,如下所示: interface ISalary&l ...

  7. Python&plus;request 分模块存放接口,多接口共用参数URL、headers的抽离,添加日志打印等《三》

    主要介绍内容如下: 1.分模块存放接口 2.多接口共用参数URL.headers的抽离为配置文件 3.添加日志打印 4.一个py文件运行所有所测的接口 如上介绍内容的作用: 1.分模块存放接口:方便多 ...

  8. 对接接口时,组织参数json出现的问题

    在进行对接第三方接口时,进行参数组装成json的过程中出现参数传递格式错误以及json格式化错误. 在拼接json时,如果json中有对象,则以map的方式组装好所有参数.最后map转成json,不然 ...

  9. 转】C&num;接口-显式接口和隐式接口的实现

    [转]C#接口-显式接口和隐式接口的实现 C#中对于接口的实现方式有隐式接口和显式接口两种: 类和接口都能调用到,事实上这就是“隐式接口实现”. 那么“显示接口实现”是神马模样呢? interface ...

随机推荐

  1. tiny&lowbar;cnn代码阅读&lpar;2&rpar;

    上一篇讲了mse函数 , 这次gradient_descent_levenberg_marquardt @see ${root}/tiny_cnn/optimizer/optimizer.h 这个函数 ...

  2. java中String&comma;StringBuffer&comma;StringBuilder之间的区别

    文章转载自:http://www.cnblogs.com/frankliiu-java/archive/2010/07/05/1771537.html String是固定长度的字符串,如果要发生变化必 ...

  3. 使用xmanager 远程redhat6&period;3

    之前装过一次,特别麻烦,装上只有远程还卡卡的,这次按照教程居然装的灰常顺利,不符合我bug体质的特性,一定要记下来啊~~~ 1.先关闭防火墙 # service iptables stop #chkc ...

  4. JCombobox组合框效果实现&lpar;转&rpar;

    JCombobox是Swing中比较常用的控件,它显示一个项列表,扩展的是ListModel接口的模型,它的显示绘制器通过实现ListCellBenderer接口来绘制列表单元,下面介绍 ①普通应用例 ...

  5. Webapck项目开发基本构建及配置

    1.创建项目文件夹 myapp 手动创建myapp,或mkdir myapp 2.cd myapp 3.npm init (初始化项目) 4.一路回车(关于项目信息的填写,可以不写,一路回车即可) 可 ...

  6. MVC入门教程

    MVC入门系列教程-视频版本,已入驻51CTO学院,文本+视频学效果更好哦.视频链接地址如下: 点我查看视频.另外,针对该系列教程博主提供有偿技术支持,群号:226090960,群内会针对该教程的问题 ...

  7. JS — 数组去重(4种方法)

    第一种:双重循环 var strCode='zxcvbnmasdfghjklopiuytrewqAWEDRFTGYHUJIK'; var str=''; for(var i=0;i<4;i++) ...

  8. 3D中的OBJ文件格式详解

    常见到的*.obj文件有两种:第一种是基于COFF(Common Object File Format)格式的OBJ文件(也称目标文件),这种格式用于编译应用程序:第二种是Alias|Wavefron ...

  9. 特效effects

    Test中使用的特效如下 首先,使用ccg(x,y)建grid,一个Grid 属性就好像一个矩阵,是一个网络的线,组成一系列的方块和矩阵. 一个(16,12)大小的grid将会运行的非常快,但是并不会 ...

  10. Windows 安装Redis程序

    一.系统环境 1.硬件系统:Windows7 64位 2.软件环境: Redis 64位 3.2.100.Redis Desktop Manager. 二.Redis安装 下载地址:https://g ...