BZOJ 3809: Gty的二逼妹子序列

时间:2022-12-21 22:57:51

 

3809: Gty的二逼妹子序列

Time Limit: 80 Sec  Memory Limit: 28 MB
Submit: 1387  Solved: 400
[Submit][Status][Discuss]

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
 
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
 
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
 
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
 
第二行包括n个整数s1...sn(1<=si<=n)。
 
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
 
保证涉及的所有数在C++的int内。
 
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
 
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
 
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
 
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
 
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
 
建议使用输入/输出优化。

Source

 

[Submit][Status][Discuss]

初识莫队算法,大体记录一下。

莫队算法可以用来解决一类区间询问问题,例如一道经典的例题

给出一个序列,还有若干次询问,每次询问在区间[l,r]中有多少个数字出现了3次及3次以上。

先考虑暴力算法,不难想到对于每个询问,扫描一遍区间,用数组记录下每个数字出现的次数并及时统计出现3次及以上的数字个数,时间复杂度O(询问数*区间大小)。

再考虑高级算法,就是维护一段区间内的数字出现次数以及3次及三次以上的数字个数,区间每次可以O(1)的向某个方向(左或右)扩展一个元素,或弹出一个元素,只需要修改该数字的出现次数,并检查是否发生了从3到2或从2到3的“质变”即可。这个算法相较于上一个暴力算法并没与在复杂度上体现出什么优势,但这是莫队算法的基础。

最后看莫队算法,采用类似于分块的sqrt(n)划分方式,先将所有询问离线,按照询问的区间左端点排序,每sqrt(n)个单位长度划分为一组,注意是按照长度。然后对于每一组询问,在组内对询问按照区间右端点排序,使其单调,然后暴力处理一个组内的所有询问即可。由于左端点相距至多sqrt(n)个长度,所有每次维护的区间的左端点最多进行sqrt(n)次改变(加入元素或删除元素),而区间的右端点由于单调性质至多移动n个单位长度,全局复杂度O(n*sqrt(n)),优秀之极。

对于这道题,一开始的想法是莫队算法+树状数组(或线段树)什么的,时间复杂度O(N*sqrt(N)*log(N)),然而亲身实践之后并没有卡过去,看来出题人没有那么友好。

考虑把树状数组的O(logN)加入和O(logN)查询做一些调整,用分块的O(1)插入和O(sqrt(N))查询替代,全局复杂度降至O(NsqrtN)。

 #include <bits/stdc++.h>

 template <class T>
inline void read(T &num) {
register int neg = false;
register int bit = getchar(); while (bit <= '') {
if (bit == '-')
neg ^= neg;
bit = getchar();
} num = ; while (bit >= '') {
num = num*
+ bit - '';
bit = getchar();
} if (neg)num = -num;
} const int N = 1e5 + ;
const int M = 1e6 + ; int n, m, s, num[N], cnt[N], sgl[N], sum[N]; /*<--- QRY --->*/ struct query {
int l, r, a, b, id, ans;
}qry[M]; inline bool cmp_lr(const query &A, const query &B) {
if (A.l / s != B.l / s)
return A.l < B.l;
else
return A.r < B.r;
} inline bool cmp_id(const query &A, const query &B) {
return A.id < B.id;
} /*<--- MO --->*/ inline int ask(int a, int b) {
if (a / s == b / s) {
int ret = ;
for (int i = a; i <= b; ++i)ret += sgl[i];
return ret;
}
else {
int ret = , lt = a / s + , rt = b / s - ;
for (int i = lt; i <= rt; ++i)ret += sum[i];
for (int i = a; i / s < lt; ++i)ret += sgl[i];
for (int i = b; i / s > rt; --i)ret += sgl[i];
return ret;
}
} inline void add(int k, int v) {
sgl[k] += v, sum[k/s] += v;
} inline void insert(int k) {
if (++cnt[k] == )add(k, );
} inline void remove(int k) {
if (--cnt[k] == )add(k, -);
} /*<--- MAIN --->*/ signed main(void) {
read(n);
read(m); s = sqrt(n); for (int i = ; i <= n; ++i)
read(num[i]); for (int i = ; i <= m; ++i) {
qry[i].id = i;
read(qry[i].l);
read(qry[i].r);
read(qry[i].a);
read(qry[i].b);
} memset(cnt, , sizeof(cnt));
memset(sum, , sizeof(sum));
memset(sgl, , sizeof(sgl)); std::sort(qry + , qry + + m, cmp_lr); for (int i = , x = , y = ; i <= m; ++i) {
while (x < qry[i].l)remove(num[x]), ++x;
while (y > qry[i].r)remove(num[y]), --y;
while (x > qry[i].l)--x, insert(num[x]);
while (y < qry[i].r)++y, insert(num[y]);
qry[i].ans = ask(qry[i].a, qry[i].b);
} std::sort(qry + , qry + + m, cmp_id); for (int i = ; i <= m; ++i)
printf("%d\n", qry[i].ans);
}

@Author: YouSiki

BZOJ 3809: Gty的二逼妹子序列的更多相关文章

  1. Bzoj 3809&colon; Gty的二逼妹子序列 莫队&comma;分块

    3809: Gty的二逼妹子序列 Time Limit: 35 Sec  Memory Limit: 28 MBSubmit: 868  Solved: 234[Submit][Status][Dis ...

  2. BZOJ 3809 Gty的二逼妹子序列 莫队算法&plus;分块

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...

  3. BZOJ 3809 Gty的二逼妹子序列(莫队&plus;分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3809 [题目大意] 给定一个长度为n(1<=n<=100000)的正整数序 ...

  4. bzoj 3809 Gty的二逼妹子序列——莫队&plus;分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 容易想到树状数组维护值域.但修改和查询都是 log 太慢. 考虑有 nsqrt(n) ...

  5. &lbrack; AHOI 2013 &rsqb; 作业 &amp&semi; &lbrack; BZOJ 3809 &rsqb; Gty的二逼妹子序列

    \(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个数在 \([a_i,b_i]\ ...

  6. bzoj 3809 Gty的二逼妹子序列 —— 莫队&plus;分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 据说一开始应该想到莫队+树状数组,然而我想的却是莫队+权值线段树... 如果用权值线段 ...

  7. bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)

    [题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...

  8. BZOJ 3809&colon; Gty的二逼妹子序列 &amp&semi; 3236&colon; &lbrack;Ahoi2013&rsqb;作业 &lbrack;莫队&rsqb;

    题意: 询问区间权值在$[a,b]$范围内种类数和个数 莫队 权值分块维护种类数和个数$O(1)-O(\sqrt{N})$ #include <iostream> #include &lt ...

  9. BZOJ&period;3809&period;Gty的二逼妹子序列&lpar;分块 莫队&rpar;

    题目链接 /* 25832 kb 26964 ms 莫队+树状数组:增加/删除/查询 都是O(logn)的,总时间复杂度O(m*sqrt(n)*logn),卡不过 莫队+分块:这样查询虽然变成了sqr ...

随机推荐

  1. ZeroMQ&lpar;java&rpar;之Router与Dealer运行原理

    在开始这部分的内容之前,先来看看ZeroMQ中HWM概念---High-Water Marks 当系统的数据量很大,而且发送频率很高的情况下,内存就很重要了,如果处理不好会出现很多问题,例如如下场景: ...

  2. Git 的基本配置

    用户信息 你个人的用户名称和电子邮件地址,用户名可随意修改,git 用于记录是谁提交了更新,以及更新人的联系方式. $ git config --global user.name "Donl ...

  3. Devexpress之DateEdit学习,可选择日期时 zt

    DateEdit默认是是值只可以选择日期的,下面就来看看怎么设置可以选择时间. 代码如下. 设置以下属性 dateEdit1.Properties.VistaDisplayMode = DevExpr ...

  4. The Viewport Transformation

    英文帖子链接http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/projection/viewport_transformation.ht ...

  5. 7——使用TextView实现跑马灯

    首先给TextView添加一个单行限制: android:singleLine="true" - 解决方案一 更改TextView的一个属性: android:ellipsize= ...

  6. MBI 跨国网络传销 金字塔诈骗 解密

    马来西亚  反传销博客地址http://combatingillegalpyramidscheme.blogspot.jp/search/label/Mface 需要FQ访问  闽渝警方协作抓获一名公 ...

  7. Android批量打包-如何一秒内打完几百个apk渠道包

    在国内Android常用渠道可能多达几十个,如: 谷歌市场.腾讯应用宝.百度手机助手.91手机商城.360应用平台.豌豆荚.安卓市场.小米.魅族商店.oppo手机.联想乐商.中兴汇天地.华为.安智.应 ...

  8. RabbitMQ 消息中间件

    RabbitMQ 是使用 Erlang 语言开发的消息中间件, 其遵循了高级消息队列协议(Advanced Message Queuing Protocol, AMQP). 与 Kafka 等消息队列 ...

  9. IE浏览器打不开网页的解决方法

    前阵子一下子安装了很多软件,后来使用IE游览器的时候,莫名其妙的打不开网页,虽然用其他浏览器(比如谷歌.火狐)可以正常浏览网页,但是由于很多软件内嵌页面都会调用Windows的IE浏览器来加载,所以I ...

  10. CSUOJ 1560 图书管理员的表白方式

    Description 小V是中南大学图书馆的图书管理员,每天要整理很多同学们还回来的书.久而久之,他认识了很多常来图书馆的同学,比如说小L.简而言之吧,就是小V喜欢上了小L,并且想在下一次她来还书的 ...