【转】机器学习在B2B的应用

时间:2022-12-20 21:35:46

原文地址:http://www.mbtmag.com/blog/2017/04/artificial-intelligence-making-it-work-industrial-companies?cmpid=horizontalcontent

作者:Pete Eppele is Senior Vice President of Products and Science at Zilliant. B2-AI company

AI in B2B

In B2B, it’s all about expanding existing customer relationships versus the more transactional, customer acquisition focus we see in B2C. The introduction of Einstein has prompted organizations to think in new ways about how AI can help improve their customer relationships. CRM, CPQ and other similar technologies are an essential foundation to improving seller efficiency. Adding a layer of intelligence (more specifically, artificial intelligence) can rapidly accelerate the value and power delivered through a company’s technology stack. For B2B industrial companies, the implications are exciting, prompting company leaders to ask critical questions such as:

  • What if AI helped us know every customer as well as our best customer?
  • What if AI empowered every sales person to perform like our top performer?
  • What if AI enabled my sellers to sell the entire product portfolio?
  • What if AI provided deal-specific prices that are most likely to result in a win?
  • What if AI could bring sales person smarts to e-commerce interactions?

Industrial companies need AI to deliver action-oriented insights to sales teams so they can drive deep, long-term customer relationships by anticipating customer needs, fighting off competitive threats, growing wallet share in accounts, and quoting consistently across all sales channels. Existing AI applications in B2B focus on retention, growth and flexible pricing that empowers companies to respond to complex dynamics such as inflation, deflation, volatile cost conditions, extreme competition, regional factors and much more. AI applications in B2B truly offer a massive opportunity to optimize the value of every customer relationship and interaction.

Is it Truly AI? Some Pointers

There’s incredible buzz around AI now, which means nearly every solution provider will be touting that they deliver AI, machine learning or deep learning. Be wary of providers that are new to the game and don’t have a deep history in B2B steeped in delivering artificial intelligence to solve the unique problems outlined above. Providers with this rich background paired with best-in-class technologies are the ones to look for. Make sure the output of the AI model is actionable, meaning it’s delivered seamlessly into your existing CPQ, e-commerce platform, CRM, home grown tool, ERP, or otherwise. You want guidance to flow into the applications that your reps use every day. From an architecture standpoint, multi-tenant SaaS is critical and the benefits are vast. From total-cost-of-ownership, to seamless upgrades, to everything in between, multi-tenant SaaS should be on your list of criteria. Most importantly, however, is having the right domain knowledge and expertise in place to build out the guidance model. In other words, to get the best results from AI models, it’s critical for data scientists to have the necessary domain expertise.

【转】机器学习在B2B的应用的更多相关文章

  1. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  2. 机器学习在SAP Cloud for Customer中的应用

    关于机器学习这个话题,我相信我这个公众号1500多位关注者里,一定有很多朋友的水平比Jerry高得多.如果您看过我以前两篇文章,您就会发现,我对机器学习仅仅停留在会使用API的层面上. 使用Java程 ...

  3. .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...

  4. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. BAT“搅局”B2B市场,CIO们准备好了吗?

    "CIO必须灵活构建其所在企业的IT系统,深入业务,以应对日新月异的数字化业务环境."   BAT军团"搅局"B2B市场,CIO们准备好了吗? 庞大的企业级市场 ...

  6. 借助亚马逊S3和RapidMiner将机器学习应用到文本挖掘

    本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模.这些技术揭示潜在内容中的意义和关系.文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋 ...

  7. Android开发学习之路-机器学习库(图像识别)、百度翻译

    对于机器学习也不是了解的很深入,今天无意中在GitHub看到一个star的比较多的库,就用着试一试,效果也还行.比是可能比不上TensorFlow的,但是在Android上用起来比较简单,毕竟Tens ...

  8. 快消品迎来B2B元年,行业将如何变革?

    一年接近尾声,又到了年终总结的时候,宴会厅里传来各种激情澎湃的演讲,有的行业遍地开花.欢声笑语不绝于耳:有的行业却没能迎来"昨夜东风",只能嗟叹"不堪回首".2 ...

  9. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

随机推荐

  1. Unity3D 5.x 交互功能 - 光线投射、碰撞设置

    1,光线投射碰撞:第一人称视线在预置范围内(如3米)和看到的物体发生碰撞 ① 检测光线投射碰撞的脚本添加在第一人称FPSController上 #pragma strict private var c ...

  2. python动态获取对象的属性和方法

    http://blog.csdn.net/kenkywu/article/details/6822220首先通过一个例子来看一下本文中可能用到的对象和相关概念.01     #coding: UTF- ...

  3. HDU 5067

    http://acm.hdu.edu.cn/showproblem.php?pid=5067 规定起点和终点的tsp问题,解法依然是状态压缩dp,在初始化和计算答案的时候略做改动即可 #include ...

  4. Model Browser

    http://www.entityframeworktutorial.net/model-browser-in-entity-framework.aspx We have created our fi ...

  5. Visual C++编程命名规则

    一.程序风格:      1.严格采用阶梯层次组织程序代码:      各层次缩进的分格采用VC的缺省风格,即每层次缩进为4格,括号位于下一行.要求相匹配的大括号在同一列,对继行则要求再缩进4格.例如 ...

  6. KVC该机制

    KVC该机制 KVC是cocoa的大招,用来间接获取或者改动对象属性的方式. 一.KVC的作用: KVC大招之中的一个: [self setValuesForKeysWithDictionary:di ...

  7. Android开发指南--0 总览

    无意间发现一个网站,主打IOS方面的教程,然而作为一个Android开发者,我就找了下网站里有没有Android的教程,还真有,这里就翻译一下. 翻译目标教程:https://www.raywende ...

  8. java基础 第八章课后习题

    1.什么是二重循环?在内层循环中使用continue和break语句,程序如何跳转? 答:二重循环就是一个循环结构体内又包含另一个完整的循环结构. continue语句跳转时是跳过了内层循环中的剩余语 ...

  9. CRT and exlucas

    CRT 解同余方程,形如\(x \equiv c_i \ mod \ m_i\),我们对每个方程构造一个解满足: 对于第\(i\)个方程:\(x \equiv 1 \ mod \ m_i\),\(x ...

  10. nlp底层技术列举

    其实目前除了之前博客写到的一些关于自然语言处理用到的知识点之外,很多其他nlp技术只是会用但是不了解原理,先整体分个类,之后再仔细分析吧. 上图是https://www.sohu.com/a/1386 ...