hdu 2586 How far away?(LCA模板题+离线tarjan算法)

时间:2024-01-04 15:28:20

How far away ?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 25408    Accepted Submission(s): 10111

Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
  For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
  Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3

2 2
1 2 100
1 2
2 1

Sample Output
10
25
100
100
题目大意:
给你一棵树,求任两点的距离。
这是LCA模板题。
求出两点的公共祖先ancst,然后dis[i,j]=depth[i]+depth[j]-depth[ancst]*2;其中depth是节点在有根树中的深度。
离线tarjan算法。。ctrlc ctrlv一段大佬的解释吧。(来自zhouzhendong的cnblogs)

LCA_Tarjan

  TarjanTarjan 算法求 LCA 的时间复杂度为 O(n+q)O(n+q) ,是一种离线算法,要用到并查集。(注:这里的复杂度其实应该不是 O(n+q)O(n+q) ,还需要考虑并查集操作的复杂度 ,但是由于在多数情况下,路径压缩并查集的单次操作复杂度可以看做 O(1)O(1),所以写成了 O(n+q)O(n+q) 。)

  TarjanTarjan 算法基于 dfs ,在 dfs 的过程中,对于每个节点位置的询问做出相应的回答。

  dfs 的过程中,当一棵子树被搜索完成之后,就把他和他的父亲合并成同一集合;在搜索当前子树节点的询问时,如果该询问的另一个节点已经被访问过,那么该编号的询问是被标记了的,于是直接输出当前状态下,另一个节点所在的并查集的祖先;如果另一个节点还没有被访问过,那么就做下标记,继续 dfs 。

  当然,暂时还没那么容易弄懂,所以建议结合下面的例子和标算来看看。

hdu 2586 How far away?(LCA模板题+离线tarjan算法)

(下面的集合合并都用并查集实现)

  比如:8−1−14−138−1−14−13 ,此时已经完成了对子树 11 的子树 1414 的 dfsdfs 与合并( 1414 子树的集合与 11 所代表的集合合并),如果存在询问 (13,14)(13,14) ,则其 LCA 即 getfather(14)getfather(14) ,即 11 ;如果还存在由节点 1313 与 已经完成搜索的子树中的 节点的询问,那么处理完。然后合并子树 1313 的集合与其父亲 11 当前的集合,回溯到子树 11 ,并深搜完所有 11 的其他未被搜索过的儿子,并完成子树 11 中所有节点的合并,再往上回溯,对节点 11 进行类似的操作即可。

大意就是,后根dfs一棵树,如果子树遍历完了,就把它整个加入子树根节点的父亲节点的并查集中。
遇到询问,就判断它的另一点是否已经遍历过了,如果是,就getfather。还是自己画画图,应该不难懂吧。
第一次写,比较粗糙,附AC代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <map>
#include <set>
typedef long long LL;
const int MAX_N=;
const int MAX_M=;
const int INF=; struct tedge
{
int to,w,next;
};
tedge edge[MAX_N*+];
int head1[MAX_N+],cnt1; void addedge(int a,int b,int c)
{
edge[cnt1]=(tedge){b,c,head1[a]};head1[a]=cnt1++;
edge[cnt1]=(tedge){a,c,head1[b]};head1[b]=cnt1++;
} struct tquery
{
int to,next;
int index;
};
tquery query[MAX_M*+];
int head2[MAX_N+],cnt2; void addquery(int a,int b,int i)
{
query[cnt2]=(tquery){b,head2[a],i};head2[a]=cnt2++;
query[cnt2]=(tquery){a,head2[b],i};head2[b]=cnt2++;
} int fa[MAX_N]; int getf(int x)
{
if(fa[x]==x)
return x;
else
return fa[x]=getf(fa[x]);
} int vis[MAX_N+];
int depth[MAX_N+];
int ans[MAX_M+]; void LCA(int x,int pa,int dis)
{
for(int i=head1[x];i!=-;i=edge[i].next)
{
int l=edge[i].to;
if(l!=pa)
{
LCA(l,x,dis+edge[i].w);
}
}
depth[x]=dis;
for(int i=head2[x];i!=-;i=query[i].next)
{
int l=query[i].to;
if(vis[l])
{
int ancst=getf(l);
ans[query[i].index]=depth[l]+depth[x]-depth[ancst]*;
//printf("%d %d %d\n",l,x,ancst);
}
}
fa[x]=pa;vis[x]=;
} void init()
{
memset(head1,-,sizeof(head1));cnt1=;
memset(head2,-,sizeof(head2));cnt2=;
memset(vis,,sizeof(vis));
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
init();
int n,m;
scanf("%d%d",&n,&m);
for(int i=,a,b,c;i<=n-;i++)
{
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c);
}
for(int i=,a,b;i<=m;i++)
{
scanf("%d%d",&a,&b);
addquery(a,b,i);
}
for(int i=;i<=n;i++)
fa[i]=i;
LCA(,-,);
for(int i=;i<=m;i++)
printf("%d\n",ans[i]);
}
return ;
}