- 背景:
接到任务,需要在一个一天数据量在460亿条记录的hive表中,筛选出某些host为特定的值时才解析该条记录的http_content中的经纬度:
解析规则譬如:
需要解析host: api.map.baidu.com
需要解析的规则:"result":{"location":{"lng":120.25088311933617,"lat":30.310684375444877},
"confidence":25
需要解析http_conent:renderReverse&&renderReverse({"status":0,"result":{"location":{"lng":120.25088311933617,"lat":30.310684375444877},"formatted_address":"???????????????????????????????????????","business":"","addressComponent":{"country":"??????","country_code":0,"province":"?????????","city":"?????????","district":"?????????","adcode":"330104","street":"????????????","street_number":"","direction":"","distance":""},"pois":[{"addr":"????????????5277???","cp":" ","direction":"???","distance":"68","name":"????????????????????????????????????","poiType":"????????????","point":{"x":120.25084961536486,"y":30.3112150
- Scala代码实现“访问hive,并保存结果到hive表”的spark任务:
开发工具为IDEA16,开发语言为scala,开发包有了spark对应集群版本下的很多个jar包,和对应集群版本下的很多个jar包,引入jar包:
scala代码:
import java.sql.{Connection, DriverManager, PreparedStatement, Timestamp} import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.hive.HiveContext
import java.util
import java.util.{UUID, Calendar, Properties}
import org.apache.spark.rdd.JdbcRDD
import org.apache.spark.sql.{Row, SaveMode, SQLContext}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{sql, SparkContext, SparkConf}
import org.apache.spark.sql.DataFrameHolder /**
* temp http_content
**/
case class Temp_Http_Content_ParserResult(success: String, lnglatType: String, longitude: String, Latitude: String, radius: String) /**
* Created by Administrator on 2016/11/15.
*/
object ParserMain {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
//.setAppName("XXX_ParserHttp").setMaster("local[1]").setMaster("spark://172.21.7.10:7077").setJars(List("xxx.jar"))
//.set("spark.executor.memory", "10g")
val sc = new SparkContext(conf)
val hiveContext = new HiveContext(sc) // use abc_hive_db;
hiveContext.sql("use abc_hive_db")
// error date format:2016-11-15,date format must be 20161115
val rdd = hiveContext.sql("select host,http_content from default.http where hour>='20161115' and hour<'20161116'") // toDF() method need this line...
import hiveContext.implicits._ // (success, lnglatType, longitude, latitude, radius)
val rdd2 = rdd.map(s => parse_http_context(s.getAs[String]("host"), s.getAs[String]("http_content"))).filter(s => s._1).map(s => Temp_Http_Content_ParserResult(s._1.toString(), s._2, s._3, s._4, s._5)).toDF()
rdd2.registerTempTable("Temp_Http_Content_ParserResult_20161115")
hiveContext.sql("create table Temp_Http_Content_ParserResult20161115 as select * from Temp_Http_Content_ParserResult_20161115") sc.stop()
} /**
* @ summary: 解析http_context字段信息
* @ param http_context 参数信息
* @ result 1:是否匹配成功;
* @ result 2:匹配出的是什么经纬度的格式:
* @ result 3:经度;
* @ result 4:纬度,
* @ result 5:radius
**/
def parse_http_context(host: String, http_context: String): (Boolean, String, String, String, String) = {
if (host == null || http_context == null) {
return (false, "", "", "", "")
} // val result2 = parse_http_context(“api.map.baidu.com”,"renderReverse&&renderReverse({\"status\":0,\"result\":{\"location\":{\"lng\":120.25088311933617,\"lat\":30.310684375444877},\"formatted_address\":\"???????????????????????????????????????\",\"business\":\"\",\"addressComponent\":{\"country\":\"??????\",\"country_code\":0,\"province\":\"?????????\",\"city\":\"?????????\",\"district\":\"?????????\",\"adcode\":\"330104\",\"street\":\"????????????\",\"street_number\":\"\",\"direction\":\"\",\"distance\":\"\"},\"pois\":[{\"addr\":\"????????????5277???\",\"cp\":\" \",\"direction\":\"???\",\"distance\":\"68\",\"name\":\"????????????????????????????????????\",\"poiType\":\"????????????\",\"point\":{\"x\":120.25084961536486,\"y\":30.3112150")
// println(result2._1 + ":" + result2._2 + ":" + result2._3 + ":" + result2._4 + ":" + result2._5) var success = false
var lnglatType = ""
var longitude = ""
var latitude = ""
var radius = ""
var lowerCaseHost = host.toLowerCase().trim();
val lowerCaseHttp_Content = http_context.toLowerCase()
// api.map.baidu.com
// "result":{"location":{"lng":120.25088311933617,"lat":30.310684375444877},
// "confidence":25
// --renderReverse&&renderReverse({"status":0,"result":{"location":{"lng":120.25088311933617,"lat":30.310684375444877},"formatted_address":"???????????????????????????????????????","business":"","addressComponent":{"country":"??????","country_code":0,"province":"?????????","city":"?????????","district":"?????????","adcode":"330104","street":"????????????","street_number":"","direction":"","distance":""},"pois":[{"addr":"????????????5277???","cp":" ","direction":"???","distance":"68","name":"????????????????????????????????????","poiType":"????????????","point":{"x":120.25084961536486,"y":30.3112150
if (lowerCaseHost.equals("api.map.baidu.com")) {
val indexLng = lowerCaseHttp_Content.indexOf("\"lng\"")
val indexLat = lowerCaseHttp_Content.indexOf("\"lat\"")
if (lowerCaseHttp_Content.indexOf("\"location\"") != -1 && indexLng != -1 && indexLat != -1) {
var splitstr: String = "\\,|\\{|\\}"
var uriItems: Array[String] = lowerCaseHttp_Content.split(splitstr)
var tempItem: String = ""
lnglatType = "BD"
success = true
for (uriItem <- uriItems) {
tempItem = uriItem.trim()
if (tempItem.startsWith("\"lng\":")) {
longitude = tempItem.replace("\"lng\":", "").trim()
} else if (tempItem.startsWith("\"lat\":")) {
latitude = tempItem.replace("\"lat\":", "").trim()
} else if (tempItem.startsWith("\"confidence\":")) {
radius = tempItem.replace("\"confidence\":", "").trim()
}
}
}
}
else if (lowerCaseHost.equals("loc.map.baidu.com")) {
。。。
} longitude = longitude.replace("\"", "")
latitude = latitude.replace("\"", "")
radius = radius.replace("\"", "") (success, lnglatType, longitude, latitude, radius)
}
}
打包,注意应为我们使用的hadoop&hive&spark on yarn的集群,我们这里并不需要想spark&hadoop一样还需要在执行spark-submit时将spark-hadoop-xx.jar打包进来,也不需要在submit-spark脚本.sh中制定jars参数,yarn会自动诊断我们需要哪些集群系统包;但是,如果你应用的是第三方的包,比如ab.jar,那打包时可以打包进来,也可以在spark-submit 参数jars后边指定特定的包。
- 写spark-submit提交脚本.sh:
- 当执行spark-submit脚本出现错误时,怎么应对呢?
注意,我们这里不是spark而是spark on yarn,当我们使用yarn-cluster方式提交时,界面是看不到任何日志新的。我们需要借助yarn管理系统来查看日志:
1、根据返回的任务id查看历史日志:
yarn logs -applicationId application_1475071482566_3329402
2、yarn页面查看日志
https://xx.xx.xx.xx:xxxxx/Yarn/ResourceManager/xxxx/cluster
用户名/密码:user/password
3、yarn关闭application:
从yarn resourcemanger界面中,可以查看到具体的applicationId,使用命令来杀掉该任务:
更多命令可以参考:http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YarnCommands.html
yarn application -kill application_1475071482566_3807023
或者从界面进入spark作业进度管理界面,进行查看作业具体执行进度,也可以kill application
参考资料:
http://blog.csdn.net/sparkexpert/article/details/50964732