A prime number (or a prime) is a natural number greater than 11 that cannot be formed by multiplying two smaller natural numbers.
Now lets define a number NN as the supreme number if and only if each number made up of an non-empty subsequence of all the numeric digits of NN must be either a prime number or 11.
For example, 1717 is a supreme number because 11, 77, 1717 are all prime numbers or 11, and 1919 is not, because 99 is not a prime number.
Now you are given an integer N\ (2 \leq N \leq 10^{100})N (2≤N≤10100), could you find the maximal supreme number that does not exceed NN?
Input
In the first line, there is an integer T\ (T \leq 100000)T (T≤100000) indicating the numbers of test cases.
In the following TT lines, there is an integer N\ (2 \leq N \leq 10^{100})N (2≤N≤10100).
Output
For each test case print "Case #x: y"
, in which xx is the order number of the test case and yy is the answer.
样例输入复制
2
6
100
样例输出复制
Case #1: 5
Case #2: 73
题意:求出最大的不超过n的由素数组成(所有数字组合情况都是素数)的元素
分析:
1、数字一定由1,2,3,5,7组成
2、数字中2,5,7两两之间不能同时出现(25,52,27,72,57,75都不是素数),由此可以推断出全部符合的数都 不超过四位
2、除1以外都不能重复出现两次和以上(会被11整除)例:313中33被11整除
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int main()
{
int T,cnt=1;
scanf("%d",&T);
int a[20]={1,2,3,5,7,11,13,17,23,31,37,53,71,73,113,131,137,173,311,317};
while(T--)
{
int n=0;
char s[111];
scanf("%s",s);
printf("Case #%d: ",cnt++);
if(strlen(s)>=4)
printf("317\n");
else
{
for(int i=0;s[i];i++)
n=n*10+s[i]-'0';
for(int i=19;i>=0;i--)
if(a[i]<=n){
printf("%d\n",a[i]);
break;
}
}
}
return 0;
}