- 将题目中所给条件用同余方程表示,可得 \(s-1\equiv \pm a,s+l-1\equiv \pm b\mod k\).
- 于是可得 \(l\equiv \pm a\pm b \mod k\),将四个 \(l\) 取模后记为 \(l_1,l_2,l_3,l_4\).
- 对于每个 \(l\) ,它一定是 \(l_i+q\cdot k,q\in \mathbb{N_+}\) 的形式,它对应的答案为 \(\frac {n\cdot k} {gcd(l_i+q\cdot k,nk)}\).
- 注意到 \(gcd(l_i+q\cdot k,nk)=gcd(nk,l_i\%k+qk\%nk)=gcd(nk,l_i+(q\%n)k)\).所以在 \(0\sim n-1\) 内枚举 \(q\) 即可.时间复杂度为 \(O(n)\).
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
ll n,k,a,b;
ll gcd(ll A,ll B)
{
return B?gcd(B,A%B):A;
}
ll p[4];
int main()
{
n=read(),k=read(),a=read(),b=read();
p[0]=(k+a+b)%k;
p[1]=(k+a-b)%k;
p[2]=(k-a-b)%k;
p[3]=(k-a+b)%k;
ll maxans=0,minans=1e18;
for(int i=0; i<4; ++i)
{
for(ll q=0; q<=n-1; ++q)
{
ll ans=n*k/gcd(p[i]+q*k,n*k);
maxans=max(maxans,ans);
minans=min(minans,ans);
}
}
cout<<minans<<' '<<maxans<<endl;
return 0;
}