New Year and Original Order
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Let S(n) denote the number that represents the digits of n in sorted order. For example, S(1) = 1, S(5) = 5, S(50394) = 3459, S(353535) = 333555.
Given a number X, compute modulo 109 + 7.
Input
The first line of input will contain the integer X (1 ≤ X ≤ 10700).
Output
Print a single integer, the answer to the question.
Examples
input
21
output
195
input
345342
output
390548434
Note
The first few values of S are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 12. The sum of these values is 195.
数位dp
f[i][j]k][o]
表示考虑了前i位,有j位>=k 是否<=n 的方案数
最后统计答案就枚举每个数 扫一遍就好了
#include<cmath> #include<ctime> #include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #include<iomanip> #include<vector> #include<string> #include<bitset> #include<queue> #include<set> #include<map> using namespace std; typedef long long ll; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();} return x*f; } void print(int x) {if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');} const int N=710,mod=int(1e9)+7; int n,f[N][N][10][2]; char s[N]; int main() { register int i,j,k,o,p; scanf("%s",s+1); int n=strlen(s+1); for(i=1;i<=9;++i) f[0][0][i][0]=1; for(i=0;i<n;++i) for(j=0;j<=i;++j) for(k=1;k<=9;++k) for(o=0;o<2;++o) for(p=0;p<=(o ? 9 : s[i+1]-'0');++p) (f[i+1][j+(p>=k)][k][o|(p<s[i+1]-'0')]+=f[i][j][k][o])%=mod; ll ans(0); for(k=1;k<=9;++k) { ll tmp(1); for(i=1;i<=n;++i,tmp=(tmp*10+1)%mod) (ans+=tmp*(f[n][i][k][0]+f[n][i][k][1]))%=mod; } cout<<ans<<endl; } /* 21 195 345342 390548434 */