Mysql实战45讲 04讲深入浅出索引(上)读书笔记 极客时间

时间:2022-12-14 15:29:54

极客时间 Mysql实战45讲 04讲深入浅出索引 极客时间(上)读书笔记 

笔记体悟

1.索引的作用:提高数据查询效率
2.常见索引模型:哈希表、有序数组、搜索树
3.哈希表:键 - 值(key - value)。
4.哈希思路:把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置
5.哈希冲突的处理办法:链表
6.哈希表适用场景:只有等值查询的场景
7.有序数组:按顺序存储。查询用二分法就可以快速查询,时间复杂度是:O(log(N))
8.有序数组查询效率高,更新效率低
9.有序数组的适用场景:静态存储引擎。
10.二叉搜索树:每个节点的左儿子小于父节点,父节点又小于右儿子
11.二叉搜索树:查询时间复杂度O(log(N)),更新时间复杂度O(log(N))
12.数据库存储大多不适用二叉树,因为树高过高,会适用N叉树
13.InnoDB中的索引模型:B+Tree
14.索引类型:主键索引、非主键索引
主键索引的叶子节点存的是整行的数据(聚簇索引),非主键索引的叶子节点内容是主键的值(二级索引)
15.主键索引和普通索引的区别:主键索引只要搜索ID这个B+Tree即可拿到数据。普通索引先搜索索引拿到主键值,再到主键索引树搜索一次(回表)
16.一个数据页满了,按照B+Tree算法,新增加一个数据页,叫做页分裂,会导致性能下降。空间利用率降低大概50%。当相邻的两个数据页利用率很低的时候会做数据页合并,合并的过程是分裂过程的逆过程。
17.从性能和存储空间方面考量,自增主键往往是更合理的选择。

提到数据库索引,我想你并不陌生,在日常工作中会经常接触到。比如某一个SQL查询比较慢,分析完原因之后,你可能就会说“给某个字段加个索引吧”之类的解决方案。但到底什么是索引,索引又是如何工作的呢?今天就让我们一起来聊聊这个话题吧。

数据库索引的内容比较多,我分成了上下两篇文章。索引是数据库系统里面最重要的概念之一,所以我希望你能够耐心看完。在后面的实战文章中,我也会经常引用这两篇文章中提到的知识点,加深你对数据库索引的理解。

一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本500页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。

索引的常见模型

索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先给你介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。

下面我主要从使用的角度,为你简单分析一下这三种模型的区别。

哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。

不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

Mysql实战45讲 04讲深入浅出索引(上)读书笔记 极客时间

图1 哈希表示意图

图中,User2和User4根据身份证号算出来的值都是N,但没关系,后面还跟了一个链表。假设,这时候你要查ID_card_n2对应的名字是什么,处理步骤就是:首先,将ID_card_n2通过哈希函数算出N;然后,按顺序遍历,找到User2。

需要注意的是,图中四个ID_card_n的值并不是递增的,这样做的好处是增加新的User时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。

所以,哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。

而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:

Mysql实战45讲 04讲深入浅出索引(上)读书笔记 极客时间

图2 有序数组示意图

这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查ID_card_n2对应的名字,用二分法就可以快速得到,这个时间复杂度是O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的User,可以先用二分法找到ID_card_X(如果不存在ID_card_X,就找到大于ID_card_X的第一个User),然后向右遍历,直到查到第一个大于ID_card_Y的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。

二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:

Mysql实战45讲 04讲深入浅出索引(上)读书笔记 极客时间

图3 二叉搜索树示意图

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查ID_card_n2的话,按照图中的搜索顺序就是按照UserA -> UserC -> UserF -> User2这个路径得到。这个时间复杂度是O(log(N))。

当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。

以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

不管是哈希还是有序数组,或者N叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM树等数据结构也被用于引擎设计中,这里我就不再一一展开了。

你心里要有个概念,数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。

截止到这里,我用了半篇文章的篇幅和你介绍了不同的数据结构,以及它们的适用场景,你可能会觉得有些枯燥。但是,我建议你还是要多花一些时间来理解这部分内容,毕竟这是数据库处理数据的核心概念之一,在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。

现在,我们一起进入相对偏实战的内容吧。

在MySQL中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于InnoDB存储引擎在MySQL数据库中使用最为广泛,所以下面我就以InnoDB为例,和你分析一下其中的索引模型。

InnoDB 的索引模型

在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。

每一个索引在InnoDB里面对应一棵B+树。

假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。

这个表的建表语句是:

mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;

表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下。

Mysql实战45讲 04讲深入浅出索引(上)读书笔记 极客时间

图4 InnoDB的索引组织结构

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。

主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
  • 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

索引维护

B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。

基于上面的索引维护过程说明,我们来讨论一个案例:

你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。

插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。

也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。

而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:

  1. 只有一个索引;

  2. 该索引必须是唯一索引。

你一定看出来了,这就是典型的KV场景。

由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

小结

今天,我跟你分析了数据库引擎可用的数据结构,介绍了InnoDB采用的B+树结构,以及为什么InnoDB要这么选择。B+树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。

由于InnoDB是索引组织表,一般情况下我会建议你创建一个自增主键,这样非主键索引占用的空间最小。但事无绝对,我也跟你讨论了使用业务逻辑字段做主键的应用场景。

最后,我给你留下一个问题吧。对于上面例子中的InnoDB表T,如果你要重建索引 k,你的两个SQL语句可以这么写:

alter table T drop index k;
alter table T add index(k);

如果你要重建主键索引,也可以这么写:

alter table T drop primary key;
alter table T add primary key(id);

我的问题是,对于上面这两个重建索引的作法,说出你的理解。如果有不合适的,为什么,更好的方法是什么?

你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾给出我的参考答案。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章末尾给你留下的问题是:如何避免长事务对业务的影响?

这个问题,我们可以从应用开发端和数据库端来看。

首先,从应用开发端来看:

  1. 确认是否使用了set autocommit=0。这个确认工作可以在测试环境中开展,把MySQL的general_log开起来,然后随便跑一个业务逻辑,通过general_log的日志来确认。一般框架如果会设置这个值,也就会提供参数来控制行为,你的目标就是把它改成1。

  2. 确认是否有不必要的只读事务。有些框架会习惯不管什么语句先用begin/commit框起来。我见过有些是业务并没有这个需要,但是也把好几个select语句放到了事务中。这种只读事务可以去掉。

  3. 业务连接数据库的时候,根据业务本身的预估,通过SET MAX_EXECUTION_TIME命令,来控制每个语句执行的最长时间,避免单个语句意外执行太长时间。(为什么会意外?在后续的文章中会提到这类案例)

其次,从数据库端来看:

  1. 监控 information_schema.Innodb_trx表,设置长事务阈值,超过就报警/或者kill;

  2. Percona的pt-kill这个工具不错,推荐使用;

  3. 在业务功能测试阶段要求输出所有的general_log,分析日志行为提前发现问题;

  4. 如果使用的是MySQL 5.6或者更新版本,把innodb_undo_tablespaces设置成2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。

Mysql实战45讲 04讲深入浅出索引(上)读书笔记 极客时间的更多相关文章

  1. Mysql实战45讲 05讲深入浅出索引(下)极客时间 读书笔记

    极客时间 Mysql实战45讲 04讲深入浅出索引(下)极客时间 笔记体会: 回表:回到主键索引树搜索的过程,称为回表覆盖索引:某索引已经覆盖了查询需求,称为覆盖索引,例如:select ID fro ...

  2. 极客时间 Mysql实战45讲 07讲行锁功过:怎么减少行锁对性能的影响笔记 极客时间

    极客时间 Mysql实战45讲 07讲行锁功过:怎么减少行锁对性能的影响笔记 极客时间极客时间 Mysql实战45讲 07讲行锁功过:怎么减少行锁对性能的影响笔记 极客时间 笔记体会: 方案一,事务相 ...

  3. 极客时间_Vue开发实战_汇总贴

    视频地址: https://time.geekbang.org/course/intro/163 https://github.com/tangjinzhou/geektime-vue-1 电脑dem ...

  4. 《MySQL实战45讲》(1-7)笔记

    <MySQL实战45讲>笔记 目录 <MySQL实战45讲>笔记 第一节: 基础架构:一条SQL查询语句是如何执行的? 连接器 查询缓存 分析器 优化器 执行器 第二节:日志系 ...

  5. 《MySQL实战45讲》&lpar;8-15&rpar;笔记

    MySQL实战45讲 目录 MySQL实战45讲 第八节: 事务到底是隔离的还是不隔离的? 在MySQL里,有两个"视图"的概念: "快照"在MVCC里是怎么工 ...

  6. Mysql实战45讲 06讲全局锁和表锁:给表加个字段怎么有这么多阻碍 极客时间 读书笔记

    Mysql实战45讲 极客时间 读书笔记 Mysql实战45讲 极客时间 读书笔记 笔记体会: 根据加锁范围:MySQL里面的锁可以分为:全局锁.表级锁.行级锁 一.全局锁:对整个数据库实例加锁.My ...

  7. 深挖计算机基础:MySQL实战45讲学习笔记

    参考极客时间专栏<MySQL实战45讲>学习笔记 一.基础篇(8讲) MySQL实战45讲学习笔记:第一讲 MySQL实战45讲学习笔记:第二讲 MySQL实战45讲学习笔记:第三讲 My ...

  8. MySQL实战45讲学习笔记:第三十九讲

    一.本节概况 MySQL实战45讲学习笔记:自增主键为什么不是连续的?(第39讲) 在第 4 篇文章中,我们提到过自增主键,由于自增主键可以让主键索引尽量地保持递增顺序插入,避免了页分裂,因此索引更紧 ...

  9. MySQL实战45讲学习笔记:第十五讲

    一.引子 在今天这篇答疑文章更新前,MySQL 实战这个专栏已经更新了 14 篇.在这些文章中,大家在评论区留下了很多高质量的留言.现在,每篇文章的评论区都有热心的同学帮忙总结文章知识点,也有不少同学 ...

随机推荐

  1. Android:控件ListView列表项与适配器结合使用

    Listview是用来展示一些重复性的数据用的,比如一些列表集合数据展示到手机,需要适配器作为载体获取数据,最后将数据填充到布局. ListView里面的每个子项Item可以使一个字符串,也可以是一个 ...

  2. leetcode Binary Tree Postorder Traversal python

    # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = ...

  3. linux网络编程之网络函数详解

    1.epoll_create函数 函数声明:int epoll_create(int size) 该 函数生成一个epoll专用的文件描述符.它其实是在内核申请一空间,用来存放你想关注的socket ...

  4. c&plus;&plus;实现快速排序详细分析

    快速排序坑挺多的,今天有空记录一下自己的实现,并加上详细的注释和举例 #include<iostream> using namespace std; int partion(int num ...

  5. HDU 1069 I Think I Need a Houseboat&lpar;模拟&rpar;

    题目链接 Problem Description Fred Mapper is considering purchasing some land in Louisiana to build his h ...

  6. jvm参数解析(含调优过程)

    前阵       对底层账单系统进行了压测调优,调优的最后一步--jvm启动参数中,减小了线程的堆栈空间:-XX:ThreadStackSize=256K,缩减至原来的四分之一,效果明显,不过并没有调 ...

  7. 事务与隔离级别------《Designing Data-Intensive Applications》读书笔记10

    和数据库打交道的程序员绕不开的话题就是:事务,作为一个简化访问数据库的应用程序的编程模型.通过使用事务,应用程序可以忽略某些潜在的错误场景和并发问题,由数据库负责处理它们.而并非每个应用程序都需要事务 ...

  8. SparkSteaming运行流程分析以及CheckPoint操作

    本文主要通过源码来了解SparkStreaming程序从任务生成到任务完成整个执行流程以及中间伴随的checkpoint操作 注:下面源码只贴出跟分析内容有关的代码,其他省略 1 分析流程 应用程序入 ...

  9. jsp登录显示

    1.登录成功设置session request.getSession().setAttribute("user", user); 2.前台test <div class=&q ...

  10. Using 1-Wire device with Intel Galileo

    Using 1-Wire device with Intel Galileo 3 Replies Many people have had trouble with getting 1-Wire de ...