贝叶斯网络总结

时间:2022-12-14 14:29:19

 贝叶斯定理:

每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:
     p(A/B) 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:P(A/B)=P(AB)/P(B)

      贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。

      下面不加证明地直接给出贝叶斯定理:

      p(B/A)=P(A/B)P(B)/P(A)

      

举例:

让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。
某个医院早上收了六个门诊病人,如下表。
  症状  职业   疾病
  打喷嚏 护士   感冒 
  打喷嚏 农夫   过敏 
  头痛  建筑工人 脑震荡 
  头痛  建筑工人 感冒 
  打喷嚏 教师   感冒 
  头痛  教师   脑震荡
现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
根据贝叶斯定理:
 P(A|B) = P(B|A) P(A) / P(B)
可得
   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏x建筑工人|感冒) x P(感冒) 
    / P(打喷嚏x建筑工人)
假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了
   P(感冒|打喷嚏x建筑工人) 
    = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) 
    / P(打喷嚏) x P(建筑工人)
这是可以计算的。
  P(感冒|打喷嚏x建筑工人) 
    = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 
    = 0.66
因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。
这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。

贝叶斯网络概念:

把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。
贝叶斯网络(Bayesian Network),又称有向无环图模型(directed acyclic graphical model ,DAG),是一种概率图模型,根据概率图的拓扑结构,考察一组随机变量{X1,X2...Xn}及其n组条件概率分布(Conditional Probability Distributions, CPD)的性质。
一般而言,贝叶斯网络的有向无环图中的节点表示随机变量,它们可以是可观察到的变量,或隐变量、未知参数等。连接两个节点的箭头代表此两个随机变量是具有因果关系(或非条件独立)。若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。

原理:

 一个贝叶斯网络定义包括一个有向无环图(DAG)和一个条件概率表集合。DAG中每一个节点表示一个随机变量,可以是可直接观测变量或隐藏变量,而有向边表示随机变量间的条件依赖;条件概率表中的每一个元素对应DAG中唯一的节点,存储此节点对于其所有直接前驱节点的联合条件概率。
      贝叶斯网络有一条极为重要的性质,就是我们断言每一个节点在其直接前驱节点的值制定后,这个节点条件独立于其所有非直接前驱前辈节点。
      这个性质很类似Markov过程。其实,贝叶斯网络可以看做是Markov链的非线性扩展。这条特性的重要意义在于明确了贝叶斯网络可以方便计算联合概率分布。一般情况先,多变量非独立联合条件概率分布有如下求取公式:
           贝叶斯网络总结
      而在贝叶斯网络中,由于存在前述性质,任意随机变量组合的联合条件概率分布被化简成
            贝叶斯网络总结
      其中Parents表示xi的直接前驱节点的联合,概率值可以从相应条件概率表中查到。
      贝叶斯网络比朴素贝叶斯更复杂,而想构造和训练出一个好的贝叶斯网络更是异常艰难。但是贝叶斯网络是模拟人的认知思维推理模式,用一组条件概率函数以及有向无环图对不确定性的因果推理关系建模,因此其具有更高的实用价值。

举例:

   贝叶斯网络总结

    其中,各个单词、表达式表示的含义如下:
smoking表示吸烟,其概率用P(S)表示,lung Cancer表示的肺癌,一个人在吸烟的情况下得肺癌的概率用P(C|S)表示,X-ray表示需要照医学上的X光,肺癌可能会导致需要照X光,吸烟也有可能会导致需要照X光(所以smoking也是X-ray的一个因),所以,因吸烟且得肺癌而需要照X光的概率用P(X|C,S)表示。
Bronchitis表示支气管炎,一个人在吸烟的情况下得支气管炎的概率用P(B|S),dyspnoea表示呼吸困难,支气管炎可能会导致呼吸困难,肺癌也有可能会导致呼吸困难(所以lung Cancer也是dyspnoea的一个因),因吸烟且得了支气管炎导致呼吸困难的概率用P(D|C,B)表示。

贝叶斯网络的构建:

贝叶斯网络总结

贝叶斯网络总结贝叶斯网络总结


然后如果不相等就建立连线

贝叶斯网络总结