洛谷 P4721 【模板】分治 FFT 解题报告

时间:2022-12-11 19:03:30

P4721 【模板】分治 FFT

题目背景

也可用多项式求逆解决。

题目描述

给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\dots,f[n-1]\),其中\(f[i]=\sum_{j=1}^if[i-j]g[j]\)

边界为 \(f[0]=1\) 。答案模 \(998244353\) 。

输入输出格式

输入格式:

第一行一个正整数 \(n\) 。

第二行共 \(n−1\) 个非负整数 \(g[1],g[2],\dots,g[n-1]\),用空格隔开。

输出格式:

一行共 \(n\) 个非负整数,表示 \(f[0],f[1],\dots,f[n-1]\)模 \(998244353\) 的值。

说明

\(2\leq n\leq 10^5\)

\(0\leq g[i]<998244353\)


其实就是用了一下\(\text{CDQ}\)分治而已,听说比多项式求逆的应用范围要广一些 ,虽然复杂度是\(O(n\log^2n)\)的。

实现细节

  • 和斜率优化一样先左然后做然后去右边
  • 每次做NTT时注意不要从右半边的\(f\)取值,那边不是0...

Code:

#include <cstdio>
#include <algorithm>
#define ll long long
const int N=(1<<18)+10;
const ll mod=998244353,G=3,Gi=332748118;
#define mul(a,b) a*b%mod
ll qp(ll d,ll k){ll f=1;while(k){if(k&1) f=mul(f,d);d=mul(d,d);k>>=1;}return f;}
ll f[N],g[N],a[N],b[N];
int n,len,L,turn[N];
void NTT(ll *a,int typ)
{
for(int i=0;i<len;i++)
if(i<turn[i])
std::swap(a[i],a[turn[i]]);
for(int le=1;le<len;le<<=1)
{
ll wn=qp(typ?G:Gi,(mod-1)/(le<<1));
for(int p=0;p<len;p+=le<<1)
{
ll w=1;
for(int i=p;i<p+le;i++,w=w*wn%mod)
{
ll tmpx=a[i],tmpy=w*a[i+le]%mod;
a[i]=(tmpx+tmpy)%mod;
a[i+le]=(tmpx-tmpy)%mod;
}
}
}
}
void CDQfft(int l,int r)
{
if(l==r) {(f[l]+=g[l])%=mod;return;}
int mid=l+r>>1;
CDQfft(l,mid);
int m=r+1-l;
len=1,L=-1;
while(len<=m<<1) len<<=1,++L;
for(int i=0;i<len;i++) a[i]=b[i]=0,turn[i]=turn[i>>1]>>1|(i&1)<<L;
for(int i=l;i<=mid;i++) a[i+1-l]=f[i];
for(int i=1;i<=r+1-l;i++) b[i]=g[i];
NTT(a,1),NTT(b,1);
for(int i=0;i<len;i++) a[i]=mul(a[i],b[i]);
NTT(a,0);
ll inv=qp(len,mod-2);
for(int i=mid+1;i<=r;i++) (f[i]+=mul(a[i+1-l],inv))%=mod;
CDQfft(mid+1,r);
}
int main()
{
scanf("%d",&n);--n;
for(int i=1;i<=n;i++) scanf("%lld",g+i);
f[0]=1;
CDQfft(1,n);
for(int i=0;i<=n;i++) printf("%lld ",(f[i]+mod)%mod);
return 0;
}

2018.12.6

洛谷 P4721 【模板】分治 FFT 解题报告的更多相关文章

  1. 洛谷 P4721 &lbrack;模板&rsqb;分治FFT —— 分治FFT &sol; 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  2. 洛谷&period;4721&period;&lbrack;模板&rsqb;分治FFT&lpar;NTT&rpar;

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  3. 解题:洛谷4721 &lbrack;模板&rsqb;分治FFT

    题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include&lt ...

  4. 洛谷&lowbar;Cx的故事&lowbar;解题报告&lowbar;第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  5. 洛谷 P2317 &lbrack;HNOI2005&rsqb;星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  6. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  7. 洛谷 P2606 &lbrack;ZJOI2010&rsqb;排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  8. 洛谷1303 A&ast;B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  9. 洛谷 P4319 变化的道路 解题报告

    P4319 变化的道路 题目描述 小 w 和小 c 在 H 国,近年来,随着 H 国的发展,H 国的道路也在不断变化着 根据 H 国的道路法,H 国道路都有一个值 \(w\),表示如果小 w 和小 c ...

随机推荐

  1. MySQL server has gone away报错原因分析&sol;

    在平时和开发的交流 以及 在论坛回答问题的或称中会发现这个问题被问及的频率非常高. 程序中报错: MySQL server has gone away 是什么意思? 如何避免? 因此,感觉有必要总结一 ...

  2. 20个简化开发任务的 JavaScript库

    所谓JavaScript库就是预先写好的可以简化基于JavaScript的应用程序开发的,尤其是Ajax和其它以web为中心的技术的 JavaScript代码集.JavaScript主要用于写内嵌于H ...

  3. db2查询锁表

    --查询锁表情况,可以获取哪个表被锁,其中agent_id为哪个DB2进程锁了表(db2inst1用户下) select * from sysibmadm.LOCKS_HELD with ur; -- ...

  4. Leetcode&colon; strStr&lpar;&rpar;

    Implement strStr(). Returns the index of the first occurrence of needle in haystack, or -1 if needle ...

  5. C&num;的winform小合集

    C#的winform小合集 博主很懒,又想记录一下自己的所做所为,仅此而已,供自己日后所看.这个是博主自主学习C#所写的一些小程序,有好玩的,也有一些无聊闲得蛋疼所作的. 内容介绍 C#入门窗口输出h ...

  6. 【SQL server】安装和配置

    (1)SQL sever 版本问题1: SQL sever 2000 .SQL sever 2005.SQL sever 2008 .SQL sever 2008 R2 安装的时候需要注意是SQL s ...

  7. SHA-1

    https://en.wikipedia.org/wiki/SHA-1 In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptograp ...

  8. Linux环境变量配置的三个方法--&sol;etc&sol;profile,~&sol;&period;bashrc,shell

    [环境配置的原因] 在windows系统下,很多软件的安装都需要设置环境变量,比如安装JAVA JDK.如果不安装环境变量,在非软件安装的目录下运行javac命令,将会报告"找不到文件&qu ...

  9. xilinx的quick boot&lpar;1&rpar; ——flash的一些内容

    xilinx的quick boot(1) --flash,quick boot配置文件,以及中间的一些联系xilinx 配置模式分为SPI,BPI.用过的spi外挂flash是N25Q./////// ...

  10. 洛谷P1223

    #include <iostream>#include <algorithm>#include <cstdio>using namespace std;int b[ ...