7、异步IO
上面两篇文章中,我们分别讲解了阻塞式同步IO、非阻塞式同步IO、多路复用IO 这三种IO模型,以及JAVA对于这三种IO模型的支持。重点说明了IO模型是由操作系统提供支持,且这三种IO模型都是同步IO,都是采用的“应用程序不询问我,我绝不会主动通知”的方式。
异步IO则是采用“订阅-通知”模式:即应用程序向操作系统注册IO监听,然后继续做自己的事情。当操作系统发生IO事件,并且准备好数据后,在主动通知应用程序,触发相应的函数:
和同步IO一样,异步IO也是由操作系统进行支持的。微软的windows系统提供了一种异步IO技术:IOCP(I/O Completion Port,I/O完成端口);
Linux下由于没有这种异步IO技术,所以使用的是epoll(上文介绍过的一种多路复用IO技术的实现)对异步IO进行模拟。
8、JAVA的支持(JAVA AIO)
8-1、JAVA AIO框架简析
同样的犹如《架构设计:系统间通信(4)——IO通信模型和JAVA实践 中篇》中对JAVA NIO框架的实现分析,这里也没有将JAVA AIO框架所有的实现类画完,只是通过这个结构分析要告诉各位读者JAVA AIO中类设计和操作系统的相关性
在文中我们一再说明JAVA AIO框架在windows下使用windows IOCP技术,在Linux下使用epoll多路复用IO技术模拟异步IO,这个从JAVA AIO框架的部分类设计上就可以看出来。例如框架中,在Windows下负责实现套接字通道的具体类是“sun.nio.ch.WindowsAsynchronousSocketChannelImpl”,其引用的IOCP类型文档注释如是:
/**
* Windows implementation of AsynchronousChannelGroup encapsulating an I/O
* completion port.
*/
如果您感兴趣,当然可以去看看全部完整代码(建议从“java.nio.channels.spi.AsynchronousChannelProvider”这个类看起)。
- 特别说明一下,请注意图中的“java.nio.channels.NetworkChannel”接口,这个接口同样被JAVA NIO框架实现了,如下图所示:
8-2、代码实例
下面,我们通过一个代码示例,来讲解JAVA AIO框架的具体使用,先上代码,在针对代码编写和运行中的要点进行讲解:
package testASocket; import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousChannelGroup;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.log4j.BasicConfigurator; /**
* JAVA AIO框架测试。请一定将
* 《架构设计:系统间通信(4)——IO通信模型和JAVA实践 中篇》看了后再看本篇测试代码。
* 这样对您理解代码的关键点非常有益。
* @author yinwenjie
*/
public class SocketServer { static {
BasicConfigurator.configure();
} private static final Object waitObject = new Object(); /**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
/*
* 对于使用的线程池技术,我一定要多说几句
* 1、Executors是线程池生成工具,通过这个工具我们可以很轻松的生成“固定大小的线程池”、“调度池”、“可伸缩线程数量的池”。具体请看API Doc
* 2、当然您也可以通过ThreadPoolExecutor直接生成池。
* 3、这个线程池是用来得到操作系统的“IO事件通知”的,不是用来进行“得到IO数据后的业务处理的”。要进行后者的操作,您可以再使用一个池(最好不要混用)
* 4、您也可以不使用线程池(不推荐),如果决定不使用线程池,直接AsynchronousServerSocketChannel.open()就行了。
* */
ExecutorService threadPool = Executors.newFixedThreadPool(20);
AsynchronousChannelGroup group = AsynchronousChannelGroup.withThreadPool(threadPool);
final AsynchronousServerSocketChannel serverSocket = AsynchronousServerSocketChannel.open(group); //设置要监听的端口“0.0.0.0”代表本机所有IP设备
serverSocket.bind(new InetSocketAddress("0.0.0.0", 83));
//为AsynchronousServerSocketChannel注册监听,注意只是为AsynchronousServerSocketChannel通道注册监听
//并不包括为 随后客户端和服务器 socketchannel通道注册的监听
serverSocket.accept(null, new ServerSocketChannelHandle(serverSocket)); //等待,以便观察现象(这个和要讲解的原理本身没有任何关系,只是为了保证守护线程不会退出)
synchronized(waitObject) {
waitObject.wait();
}
}
} /**
* 这个处理器类,专门用来响应 ServerSocketChannel 的事件。
* 还记得我们在《架构设计:系统间通信(4)——IO通信模型和JAVA实践 中篇》中所提到的内容吗?ServerSocketChannel只有一种事件:接受客户端的连接
* @author yinwenjie
*/
class ServerSocketChannelHandle implements CompletionHandler<AsynchronousSocketChannel, Void> {
/**
* 日志
*/
private static final Log LOGGER = LogFactory.getLog(ServerSocketChannelHandle.class); private AsynchronousServerSocketChannel serverSocketChannel; /**
* @param serverSocketChannel
*/
public ServerSocketChannelHandle(AsynchronousServerSocketChannel serverSocketChannel) {
this.serverSocketChannel = serverSocketChannel;
} /**
* 注意,我们分别观察 this、socketChannel、attachment三个对象的id。
* 来观察不同客户端连接到达时,这三个对象的变化,以说明ServerSocketChannelHandle的监听模式
*/
@Override
public void completed(AsynchronousSocketChannel socketChannel, Void attachment) {
ServerSocketChannelHandle.LOGGER.info("completed(AsynchronousSocketChannel result, ByteBuffer attachment)");
//每次都要重新注册监听(一次注册,一次响应),但是由于“文件状态标示符”是独享的,所以不需要担心有“漏掉的”事件
this.serverSocketChannel.accept(attachment, this); //为这个新的socketChannel注册“read”事件,以便操作系统在收到数据并准备好后,主动通知应用程序
//在这里,由于我们要将这个客户端多次传输的数据累加起来一起处理,所以我们将一个stringbuffer对象作为一个“附件”依附在这个channel上
//
ByteBuffer readBuffer = ByteBuffer.allocate(50);
socketChannel.read(readBuffer, new StringBuffer(), new SocketChannelReadHandle(socketChannel , readBuffer));
} /* (non-Javadoc)
* @see java.nio.channels.CompletionHandler#failed(java.lang.Throwable, java.lang.Object)
*/
@Override
public void failed(Throwable exc, Void attachment) {
ServerSocketChannelHandle.LOGGER.info("failed(Throwable exc, ByteBuffer attachment)");
}
} /**
* 负责对每一个socketChannel的数据获取事件进行监听。<p>
*
* 重要的说明:一个socketchannel都会有一个独立工作的SocketChannelReadHandle对象(CompletionHandler接口的实现),
* 其中又都将独享一个“文件状态标示”对象FileDescriptor、
* 一个独立的由程序员定义的Buffer缓存(这里我们使用的是ByteBuffer)、
* 所以不用担心在服务器端会出现“窜对象”这种情况,因为JAVA AIO框架已经帮您组织好了。<p>
*
* 但是最重要的,用于生成channel的对象:AsynchronousChannelProvider是单例模式,无论在哪组socketchannel,
* 对是一个对象引用(但这没关系,因为您不会直接操作这个AsynchronousChannelProvider对象)。
* @author yinwenjie
*/
class SocketChannelReadHandle implements CompletionHandler<Integer, StringBuffer> {
/**
* 日志
*/
private static final Log LOGGER = LogFactory.getLog(SocketChannelReadHandle.class); private AsynchronousSocketChannel socketChannel; /**
* 专门用于进行这个通道数据缓存操作的ByteBuffer<br>
* 当然,您也可以作为CompletionHandler的attachment形式传入。<br>
* 这是,在这段示例代码中,attachment被我们用来记录所有传送过来的Stringbuffer了。
*/
private ByteBuffer byteBuffer; public SocketChannelReadHandle(AsynchronousSocketChannel socketChannel , ByteBuffer byteBuffer) {
this.socketChannel = socketChannel;
this.byteBuffer = byteBuffer;
} /* (non-Javadoc)
* @see java.nio.channels.CompletionHandler#completed(java.lang.Object, java.lang.Object)
*/
@Override
public void completed(Integer result, StringBuffer historyContext) {
//如果条件成立,说明客户端主动终止了TCP套接字,这时服务端终止就可以了
if(result == -1) {
try {
this.socketChannel.close();
} catch (IOException e) {
SocketChannelReadHandle.LOGGER.error(e);
}
return;
} SocketChannelReadHandle.LOGGER.info("completed(Integer result, Void attachment) : 然后我们来取出通道中准备好的值");
/*
* 实际上,由于我们从Integer result知道了本次channel从操作系统获取数据总长度
* 所以实际上,我们不需要切换成“读模式”的,但是为了保证编码的规范性,还是建议进行切换。
*
* 另外,无论是JAVA AIO框架还是JAVA NIO框架,都会出现“buffer的总容量”小于“当前从操作系统获取到的总数据量”,
* 但区别是,JAVA AIO框架中,我们不需要专门考虑处理这样的情况,因为JAVA AIO框架已经帮我们做了处理(做成了多次通知)
* */
this.byteBuffer.flip();
byte[] contexts = new byte[1024];
this.byteBuffer.get(contexts, 0, result);
this.byteBuffer.clear();
try {
String nowContent = new String(contexts , 0 , result , "UTF-8");
historyContext.append(nowContent);
SocketChannelReadHandle.LOGGER.info("================目前的传输结果:" + historyContext);
} catch (UnsupportedEncodingException e) {
SocketChannelReadHandle.LOGGER.error(e);
} //如果条件成立,说明还没有接收到“结束标记”
if(historyContext.indexOf("over") == -1) {
return;
} //=========================================================================
// 和上篇文章的代码相同,我们以“over”符号作为客户端完整信息的标记
//=========================================================================
SocketChannelReadHandle.LOGGER.info("=======收到完整信息,开始处理业务=========");
historyContext = new StringBuffer(); //还要继续监听(一次监听一次通知)
this.socketChannel.read(this.byteBuffer, historyContext, this);
} /* (non-Javadoc)
* @see java.nio.channels.CompletionHandler#failed(java.lang.Throwable, java.lang.Object)
*/
@Override
public void failed(Throwable exc, StringBuffer historyContext) {
SocketChannelReadHandle.LOGGER.info("=====发现客户端异常关闭,服务器将关闭TCP通道");
try {
this.socketChannel.close();
} catch (IOException e) {
SocketChannelReadHandle.LOGGER.error(e);
}
}
}
8-2-1、要点讲解
注意在JAVA NIO框架中,我们说到了一个重要概念“selector”(选择器)。它负责代替应用查询中所有已注册的通道到操作系统中进行IO事件轮询、管理当前注册的通道集合,定位发生事件的通道等操操作;但是在JAVA AIO框架中,由于应用程序不是“轮询”方式,而是订阅-通知方式,所以不再需要“selector”(选择器)了,改由channel通道直接到操作系统注册监听。
JAVA AIO框架中,只实现了两种网络IO通道“AsynchronousServerSocketChannel”(服务器监听通道)、“AsynchronousSocketChannel”(socket套接字通道)。但是无论哪种通道他们都有独立的fileDescriptor(文件标识符)、attachment(附件,附件可以使任意对象,类似“通道上下文”),并被独立的SocketChannelReadHandle类实例引用。我们通过debug操作来看看它们的引用结构:
在测试过程中,我们启动了两个客户端(客户端用什么语言来写都行,用阻塞或者非阻塞方式也都行,只要是支持 TCP Socket套接字的就行。如果您非要看看客户端是怎么写的,您可以参见我的《架构设计:系统间通信(3)——IO通信模型和JAVA实践 上篇》这篇文章中的客户端代码示例),然后我们观察服务器端对这两个客户端通道的处理情况:
可以看到,在服务器端分别为客户端1和客户端2创建的两个WindowsAsynchronousSocketChannelImpl对象为:
客户端1:WindowsAsynchronousSocketChannelImpl:760 | FileDescriptor:762
客户端2:WindowsAsynchronousSocketChannelImpl:792 | FileDescriptor:797
接下来,我们让两个客户端发送信息到服务器端,并观察服务器端的处理情况。客户端1发来的消息和客户端2发来的消息,在服务器端的处理情况如下图所示:
客户端1:WindowsAsynchronousSocketChannelImpl:760 | FileDescriptor:762 | SocketChannelReadHandle:803 | HeapByteBuffer:808
客户端2:WindowsAsynchronousSocketChannelImpl:792 | FileDescriptor:797 | SocketChannelReadHandle:828 | HeapByteBuffer:833
可以明显看到,服务器端处理每一个客户端通道所使用的SocketChannelReadHandle(处理器)对象都是独立的,并且所引用的SocketChannel对象都是独立的。
- JAVA NIO和JAVA AIO框架,除了因为操作系统的实现不一样而去掉了Selector外,其他的重要概念都是存在的,例如上文中提到的Channel的概念,还有演示代码中使用的Buffer缓存方式。实际上JAVA NIO和JAVA AIO框架您可以看成是一套完整的“高并发IO处理”的实现。
8-2-2、还有改进可能
当然,以上代码是示例代码,目标是为了让您了解JAVA AIO框架的基本使用。所以它还有很多改造的空间,例如:
在生产环境下,我们需要记录这个通道上“用户的登录信息”。那么这个需求可以使用JAVA AIO中的“附件”功能进行实现。
我们在本文和上文(《架构设计:系统间通信(4)——IO通信模型和JAVA实践 中篇》)中,都是使用“自定义文本”格式传输内容,并检查“over”关键字。但是在正式生产环境下,您会这样用吗?
显然是不会的,因为它压缩率不高。要么我们会使用json格式:因为它在相同的压缩率的前提下,有更好的信息结构;我们还可以使用protobuffer:因为它兼顾传输效率和良好的信息结构;甚至还可以使用TLV格式:提供很好的信息传输效率(它连一个多余的byte描述都没有),这几种格式的讲解,您可以参考《架构设计:系统间通信(1)——概述从“聊天”开始上篇》。
记住JAVA AIO 和 JAVA NIO 框架都是要使用线程池的(当然您也可以不用),线程池的使用原则,一定是只有业务处理部分才使用,使用后马上结束线程的执行(还回线程池或者消灭它)。JAVA AIO框架中还有一个线程池,是拿给“通知处理器”使用的,这是因为JAVA AIO框架是基于“订阅-通知”模型的,“订阅”操作可以由主线程完成,但是您总不能要求在应用程序中并发的“通知”操作也在主线程上完成吧^_^。
最好的改进方式,当然就是使用Netty或者Mina咯。
8-3、为什么还有Netty
那么有的读者可能就会问,既然JAVA NIO / JAVA AIO已经实现了各主流操作系统的底层支持,那么为什么现在主流的JAVA NIO技术会是Netty和MINA呢?答案很简单:因为更好用,这里举几个方面的例子:
虽然JAVA NIO 和 JAVA AIO框架提供了 多路复用IO/异步IO的支持,但是并没有提供上层“信息格式”的良好封装。例如前两者并没有提供针对 Protocol Buffer、JSON这些信息格式的封装,但是Netty框架提供了这些数据格式封装(基于责任链模式的编码和解码功能)
要编写一个可靠的、易维护的、高性能的(注意它们的排序)NIO/AIO 服务器应用。除了框架本身要兼容实现各类操作系统的实现外。更重要的是它应该还要处理很多上层特有服务,例如:客户端的权限、还有上面提到的信息格式封装、简单的数据读取。这些Netty框架都提供了响应的支持。
JAVA NIO框架存在一个poll/epoll bug:Selector doesn’t block on Selector.select(timeout),不能block意味着CPU的使用率会变成100%(这是底层JNI的问题,上层要处理这个异常实际上也好办)。当然这个bug只有在Linux内核上才能重现。
这个问题在JDK 1.7版本中还没有被完全解决:http://bugs.java.com/bugdatabase/view_bug.do?bug_id=2147719。虽然Netty 4.0中也是基于JAVA NIO框架进行封装的(上文中已经给出了Netty中NioServerSocketChannel类的介绍),但是Netty已经将这个bug进行了处理。
其他原因,用过Netty后,您就可以自己进行比较了。
9、后文预告
通过三篇文章,我们把操作系统的四种IO模型都进行了介绍,并且说明了JAVA对这四种IO模型的支持,也给出了代码讲解。有读者反映还是不够深入,例如典型的EPOLL技术的工作细节并没有讲解,也没有进行各种IO模型的性能比较,等等。别慌,我计划未来的3-4个月我们都会讨论“系统间通信技术”,所以就想做“负载均衡”那个系列的专栏一样,我们会在后面的时间进行补全。当然本人的技术水平有限,写博客的目的主要也是为了分享和总结,所以欢迎各位读者多多吐槽。
从下篇文章开始,我们将话一到两篇文章的内容,讨论Netty框架(以Netty4.0版本作为讨论基础)。随后我们将开始介绍JAVA 的RIM,并从RIM引导进入RPC技术的介绍。
来源:http://blog.csdn.net/yinwenjie
系统间通信(5)——IO通信模型和JAVA实践 下篇的更多相关文章
-
系统间通信(3)——IO通信模型和JAVA实践 上篇
来源:http://blog.csdn.net/yinwenjie 1.全文提要 系统间通信本来是一个很大的概念,我们首先重通信模型开始讲解.在理解了四种通信模型的工作特点和区别后,对于我们后文介绍搭 ...
-
系统间通信(4)——IO通信模型和JAVA实践 中篇
4.多路复用IO模型 在"上篇"文章中,我们已经提到了使用多线程解决高并发场景的问题所在,这篇文章我们开始 4-1.现实场景 我们试想一下这样的现实场景: 一个餐厅同时有100位客 ...
-
JVM内存结构、Java内存模型和Java对象模型
Java作为一种面向对象的,跨平台语言,其对象.内存等一直是比较难的知识点.而且很多概念的名称看起来又那么相似,很多人会傻傻分不清楚.比如本文要讨论的JVM内存结构.Java内存模型和Java对象模型 ...
-
系统间通信(10)——RPC的基本概念
1.概述 经过了详细的信息格式.网络IO模型的讲解,并且通过JAVA RMI的讲解进行了预热.从这篇文章开始我们将进入这个系列博文的另一个重点知识体系的讲解:RPC.在后续的几篇文章中,我们首先讲解R ...
-
系统间通信——RPC架构设计
架构设计:系统间通信(10)——RPC的基本概念 1.概述经过了详细的信息格式.网络IO模型的讲解,并且通过JAVA RMI的讲解进行了预热.从这篇文章开始我们将进入这个系列博文的另一个重点知识体系的 ...
-
基于JVM原理、JMM模型和CPU缓存模型深入理解Java并发编程
许多以Java多线程开发为主题的技术书籍,都会把对Java虚拟机和Java内存模型的讲解,作为讲授Java并发编程开发的主要内容,有的还深入到计算机系统的内存.CPU.缓存等予以说明.实际上,在实际的 ...
-
系统间通信(8)——通信管理与RMI 上篇
1.概述 在概述了数据描述格式的基本知识.IO通信模型的基本知识后.我们终于可以进入这个系列博文的重点:系统间通信管理.在这个章节我将通过对RMI的详细介绍,引出一个重要的系统间通信的管理规范RPC, ...
-
分布式架构从零开始========》【基于Java自身技术实现消息方式的系统间通信】
基于Java自身包实现消息方式的系统间通信的方式有:TCP/IP+BIO,TCP/IP+NIO,UDP/IP+BIO,UDP/IP+NIO.下面就这4种类型一一做个详细的介绍: 一.TCP/IP+BI ...
-
JMS解决系统间通信问题
近期在给公司项目做二次重构,将原来庞大的系统拆分成几个小系统.系统与系统之间通过接口调用,系统间通信有非常多方式,如系统间通信接口做成请求controller,只是这样不方便也不安全,经常使用的方式是 ...
随机推荐
-
CSS3文本溢出显示省略号
CCS3属性之text-overflow:ellipsis;的用法和注意之处 语法: text-overflow:clip | ellipsis 默认值:clip 适用于:所有元素 clip: 当对象 ...
-
给备战NOIP 2014 的战友们的10条建议
应老胡要求,要写10条建议= = begin 1. 注意文件关联 比如 halt 前要close(input); close(output); 还有就是一定要打这两句话= = 2. 快排,大家都懂得. ...
-
OpenCV 简介
自版本OpenCV2.2开始,OpenCV库便被划分为多个模块.这些模块编译成库文件后,位于lib文件夹中. opencv_core模块,包含核心功能,尤其是底层数据结构和算法函数. opencv_i ...
-
kickstrat
定制部分 硬盘分区 root密码 网络地址 公共部分 %pre% %post% tcp调优 集中配置程序(ansible) sudo配置
-
正则表达式匹配中文字符串的文章URL
http://www.cnblogs.com/yitian/archive/2008/11/14/1333569.html
-
ios开发——实用技术篇OC篇&;获取内存使用情况
获取内存使用情况 iOS 获取 当前设备 可用内存 及当前 应用 所占内存 (-- ::) 转载 ▼ 标签: ios 设备 可用内存 所占内存 内存 it 分类: iOS // 获取当前设备可用内存及 ...
-
IsBadReadPtr|IsBadWritePtr调试崩溃
遇到一未找到必然出现条件的崩溃,不知道什么时候能触发崩溃,崩溃dump显示,试图访问了非法的内存或者写入了非法的内存 此时如下两个函数就比较有用了: BOOL WINAPI IsBadReadPtr( ...
-
在mysql 5.6的环境下修改生产环境的表结构(在线ddl) ----工具pt-osc
随着需求的变化越来越快,在线修改表结构变得越来越需要. 在mysql5.6以前,mysql的修改表结构操作会锁表,这样就会造成开发人员或者DBA修改表结构必须要等到凌晨流量谷值或者停服修改.这样必定会 ...
-
Hdfs dfs命令使用
如果是把数据放在了hdfs系统,那么我们如何访问他们呢? 1.hdfs查看文件夹 ./hdfs dfs -ls hdfs://mycluster/output/online/ 2.hdfs创建目录df ...
-
[svc]traceroute(udp+icmp)&;tracert(icmp)原理
2018年4月11日 11:41:29更新 工具 发包 触发点 结局 traceroute 初始发udp包 ttl递增,icmp每一跳报ttl超时 udp端口不可达 tracert 初始发icmp r ...