Is it possible to have ROC curve for training set and test set separately for each fold in 5 fold cross validation in Caret?
是否可以将训练集和测试集的ROC曲线分别对应于在Caret的5次交叉验证中分别进行设置和测试?
library(caret)
train_control <- trainControl(method="cv", number=5,savePredictions = TRUE,classProbs = TRUE)
output <- train(Species~., data=iris, trControl=train_control, method="rf")
I can do the following but I do not know if it returns ROC for training set of Fold1 or for test set:
我可以做以下的事情,但是我不知道它是否返回ROC用于Fold1的训练集还是用于测试集:
library(pROC)
selectedIndices <- rfmodel$pred$Resample == "Fold1"
plot.roc(rfmodel$pred$obs[selectedIndices],rfmodel$pred$setosa[selectedIndices])
1 个解决方案
#1
3
It is true that the documentation is not at all clear regarding the contents of rfmodel$pred
- I would bet that the predictions included are for the fold used as a test set, but I cannot point to any evidence in the docs; nevertheless, and regardless of this, you are still missing some points in the way you are trying to get the ROC.
确实,关于rfmodel$pred的内容文档并不清楚——我敢打赌,其中包含的预测是作为测试集使用的折叠,但我不能指出文档中的任何证据;尽管如此,尽管如此,你还是错过了一些你想要得到中华民国的方法。
First, let's isolate rfmodel$pred
in a separate dataframe for easier handling:
首先,让我们将rfmodel$pred隔离在一个单独的dataframe中,以便更容易处理:
dd <- rfmodel$pred
nrow(dd)
# 450
Why 450 rows? It is because you have tried 3 different parameter sets (in your case just 3 different values for mtry
):
为什么450行吗?因为您尝试了3个不同的参数集(在您的例子中,mtry只有3个不同的值):
rfmodel$results
# output:
mtry Accuracy Kappa AccuracySD KappaSD
1 2 0.96 0.94 0.04346135 0.06519202
2 3 0.96 0.94 0.04346135 0.06519202
3 4 0.96 0.94 0.04346135 0.06519202
and 150 rows X 3 settings = 450.
150行x3设置= 450。
Let's have a closer look at the contents of rfmodel$pred
:
让我们仔细看看rfmodel$pred的内容:
head(dd)
# result:
pred obs setosa versicolor virginica rowIndex mtry Resample
1 setosa setosa 1.000 0.000 0 2 2 Fold1
2 setosa setosa 1.000 0.000 0 3 2 Fold1
3 setosa setosa 1.000 0.000 0 6 2 Fold1
4 setosa setosa 0.998 0.002 0 24 2 Fold1
5 setosa setosa 1.000 0.000 0 33 2 Fold1
6 setosa setosa 1.000 0.000 0 38 2 Fold1
- Column
obs
contains the true values - 列obs包含真正的值。
- The three columns
setosa
,versicolor
, andvirginica
contain the respective probabilities calculated for each class, and they sum up to 1 for each row - 这三列分别是setosa、versicolor和virginica,它们包含为每个类计算的各自的概率,每一行的总和为1
- Column
pred
contains the final prediction, i.e. the class with the maximum probability from the three columns mentioned above - 列pred包含最终的预测,即上述三列中概率最大的类
If this were the whole story, your way of plotting the ROC would be OK, i.e.:
如果这是整个故事,你的方式策划ROC是可以的,也就是说:
selectedIndices <- rfmodel$pred$Resample == "Fold1"
plot.roc(rfmodel$pred$obs[selectedIndices],rfmodel$pred$setosa[selectedIndices])
But this is not the whole story (the mere existence of 450 rows instead of just 150 should have given a hint already): notice the existence of a column named mtry
; indeed, rfmodel$pred
includes the results for all runs of cross-validation (i.e. for all the parameter settings):
但这并不是故事的全部(仅仅存在450行而不是仅仅存在150行就已经给出了提示):请注意名为mtry的列的存在;实际上,rfmodel$pred包括所有交叉验证的结果(即所有参数设置):
tail(dd)
# result:
pred obs setosa versicolor virginica rowIndex mtry Resample
445 virginica virginica 0 0.004 0.996 112 4 Fold5
446 virginica virginica 0 0.000 1.000 113 4 Fold5
447 virginica virginica 0 0.020 0.980 115 4 Fold5
448 virginica virginica 0 0.000 1.000 118 4 Fold5
449 virginica virginica 0 0.394 0.606 135 4 Fold5
450 virginica virginica 0 0.000 1.000 140 4 Fold5
This is the ultimate reason why your selectedIndices
calculation is not correct; it should also include a specific choice of mtry
, otherwise the ROC does not make any sense, since it "aggregates" more than one model:
这就是你的选择指数计算不正确的根本原因;它还应包括具体的mtry选择,否则ROC没有任何意义,因为它“聚合”了多个模型:
selectedIndices <- rfmodel$pred$Resample == "Fold1" & rfmodel$pred$mtry == 2
--
- - -
As I said in the beginning, I bet that the predictions in rfmodel$pred
are for the folder as a test set; indeed, if we compute manually the accuracies, they coincide with the ones reported in rfmodel$results
shown above (0.96 for all 3 settings), which we know are for the folder used as test (arguably, the respective training accuracies are 1.0):
正如我在一开始所说的,我打赌rfmodel$pred中的预测是针对作为测试集的文件夹的;实际上,如果我们手工计算精度,它们与上面rfmodel$results中所报告的结果一致(对于所有3个设置,都是0.96),我们知道这些结果是用于作为测试的文件夹的(可以说,相应的训练精度是1.0):
for (i in 2:4) { # mtry values in {2, 3, 4}
acc = (length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold1'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold2'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold3'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold4'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold5'))/30
)/5
print(acc)
}
# result:
[1] 0.96
[1] 0.96
[1] 0.96
#1
3
It is true that the documentation is not at all clear regarding the contents of rfmodel$pred
- I would bet that the predictions included are for the fold used as a test set, but I cannot point to any evidence in the docs; nevertheless, and regardless of this, you are still missing some points in the way you are trying to get the ROC.
确实,关于rfmodel$pred的内容文档并不清楚——我敢打赌,其中包含的预测是作为测试集使用的折叠,但我不能指出文档中的任何证据;尽管如此,尽管如此,你还是错过了一些你想要得到中华民国的方法。
First, let's isolate rfmodel$pred
in a separate dataframe for easier handling:
首先,让我们将rfmodel$pred隔离在一个单独的dataframe中,以便更容易处理:
dd <- rfmodel$pred
nrow(dd)
# 450
Why 450 rows? It is because you have tried 3 different parameter sets (in your case just 3 different values for mtry
):
为什么450行吗?因为您尝试了3个不同的参数集(在您的例子中,mtry只有3个不同的值):
rfmodel$results
# output:
mtry Accuracy Kappa AccuracySD KappaSD
1 2 0.96 0.94 0.04346135 0.06519202
2 3 0.96 0.94 0.04346135 0.06519202
3 4 0.96 0.94 0.04346135 0.06519202
and 150 rows X 3 settings = 450.
150行x3设置= 450。
Let's have a closer look at the contents of rfmodel$pred
:
让我们仔细看看rfmodel$pred的内容:
head(dd)
# result:
pred obs setosa versicolor virginica rowIndex mtry Resample
1 setosa setosa 1.000 0.000 0 2 2 Fold1
2 setosa setosa 1.000 0.000 0 3 2 Fold1
3 setosa setosa 1.000 0.000 0 6 2 Fold1
4 setosa setosa 0.998 0.002 0 24 2 Fold1
5 setosa setosa 1.000 0.000 0 33 2 Fold1
6 setosa setosa 1.000 0.000 0 38 2 Fold1
- Column
obs
contains the true values - 列obs包含真正的值。
- The three columns
setosa
,versicolor
, andvirginica
contain the respective probabilities calculated for each class, and they sum up to 1 for each row - 这三列分别是setosa、versicolor和virginica,它们包含为每个类计算的各自的概率,每一行的总和为1
- Column
pred
contains the final prediction, i.e. the class with the maximum probability from the three columns mentioned above - 列pred包含最终的预测,即上述三列中概率最大的类
If this were the whole story, your way of plotting the ROC would be OK, i.e.:
如果这是整个故事,你的方式策划ROC是可以的,也就是说:
selectedIndices <- rfmodel$pred$Resample == "Fold1"
plot.roc(rfmodel$pred$obs[selectedIndices],rfmodel$pred$setosa[selectedIndices])
But this is not the whole story (the mere existence of 450 rows instead of just 150 should have given a hint already): notice the existence of a column named mtry
; indeed, rfmodel$pred
includes the results for all runs of cross-validation (i.e. for all the parameter settings):
但这并不是故事的全部(仅仅存在450行而不是仅仅存在150行就已经给出了提示):请注意名为mtry的列的存在;实际上,rfmodel$pred包括所有交叉验证的结果(即所有参数设置):
tail(dd)
# result:
pred obs setosa versicolor virginica rowIndex mtry Resample
445 virginica virginica 0 0.004 0.996 112 4 Fold5
446 virginica virginica 0 0.000 1.000 113 4 Fold5
447 virginica virginica 0 0.020 0.980 115 4 Fold5
448 virginica virginica 0 0.000 1.000 118 4 Fold5
449 virginica virginica 0 0.394 0.606 135 4 Fold5
450 virginica virginica 0 0.000 1.000 140 4 Fold5
This is the ultimate reason why your selectedIndices
calculation is not correct; it should also include a specific choice of mtry
, otherwise the ROC does not make any sense, since it "aggregates" more than one model:
这就是你的选择指数计算不正确的根本原因;它还应包括具体的mtry选择,否则ROC没有任何意义,因为它“聚合”了多个模型:
selectedIndices <- rfmodel$pred$Resample == "Fold1" & rfmodel$pred$mtry == 2
--
- - -
As I said in the beginning, I bet that the predictions in rfmodel$pred
are for the folder as a test set; indeed, if we compute manually the accuracies, they coincide with the ones reported in rfmodel$results
shown above (0.96 for all 3 settings), which we know are for the folder used as test (arguably, the respective training accuracies are 1.0):
正如我在一开始所说的,我打赌rfmodel$pred中的预测是针对作为测试集的文件夹的;实际上,如果我们手工计算精度,它们与上面rfmodel$results中所报告的结果一致(对于所有3个设置,都是0.96),我们知道这些结果是用于作为测试的文件夹的(可以说,相应的训练精度是1.0):
for (i in 2:4) { # mtry values in {2, 3, 4}
acc = (length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold1'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold2'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold3'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold4'))/30 +
length(which(dd$pred == dd$obs & dd$mtry==i & dd$Resample=='Fold5'))/30
)/5
print(acc)
}
# result:
[1] 0.96
[1] 0.96
[1] 0.96