【笔记】在线购买率转化高达60%,Amazon推荐系统是如何做到的?

时间:2022-12-07 17:47:06
案例来源:@AI前线
(以下为案例的简要概述,便于之后能快速检索到相关内容。部分文字与图片可能直接来自原文,如有侵权请告知,谢谢)

1. 简介:本案例是对推荐系统的简单介绍,可用于对推荐系统现有主流方法的了解

2. 亚马逊使用了哪些信息进行推荐:
1)当前浏览品类
2)与当前商品经常一同购买的商品
3)用户最近浏览记录
4)用户浏览历史(长期)中的商品
5)用户浏览历史(长期)相关的商品
6)购买相同商品的其它用户购买的物品
7)已购商品的新版本
8)用户购买历史(如近期购买商品的互补品)
9)畅销商品

3. 推荐系统模型:U x S → R
1)U是用户矩阵
2)S是物品矩阵
3)R是用户对物品的喜爱程度,推荐系统就是基于现有的信息填补R矩阵

4. 常用推荐算法
1)基于内容:易实现,效果好,但是如何获得一个物品的内容、相似度如何定义等有些情况下会较难把握
2)协同过滤:基于物的协同过滤与基于人的协同过滤
3)矩阵分解(SVD):用户-物品评分矩阵A很大且稀疏,将A分解为用户矩阵(用户潜在因子)和物品矩阵(物品潜在因子),目标是这两个矩阵的乘积尽可能接近R。缺点是只利用了评分信息,忽略了用户属性和物品属性
4)因子分解机(FM):将SVD推广到多类潜因子的情况,如分解为 用户、物品、用户性别、用户年龄、物品价格 等多个因子,允许因子之间有相关关系(如下图,方程前半部分是线性回归,后半部分加入了两两因子间关系)【笔记】在线购买率转化高达60%,Amazon推荐系统是如何做到的?

5)深度学习:训练深度神经网络,输入用户id,输出层做softmax,得到对每个物品id的权重
6)机器学习排序
7)探索与利用:先对用户聚类(如分为abcde五类),随机对a中的用户1和b中的用户2推荐电影,如果用户1没点击,2点击了,说明b类用户可能对该电影更感兴趣。
8)集成:对上述多种方法的ensemble